Book
Discrete Optimization and Operations Research/9th International Conference, DOOR 2016, Vladivostok, Russia, September 19-23, 2016, Proceedings
This book constitutes the proceedings of the 9th International Conference on Discrete Optimization and Operations Research, DOOR 2016, held in Vladivostok, Russia, in September 2016.
The 39 full papers presented in this volume were carefully reviewed and selected from 181 submissions. They were organized in topical sections named: discrete optimization; scheduling problems; facility location; mathematical programming; mathematical economics and games; applications of operational research; and short communications.
The understanding of how a networked system behaves and keeps its topological features when facing element failures is essential in several applications ranging from biological to social networks. In this context, one of the most discussed and important topics is the ability to distinguish similarities between networks. A probabilistic approach already showed useful in graph comparisons when representing the network structure as a set of probability distributions, and, together with the Jensen-Shannon divergence, allows to quantify dissimilarities between graphs. The goal of this article is to compare these methodologies for the analysis of network comparisons and robustness.
Contemporary domination of chain-stores in retailing is modeled, perceiving a monopolistic retailer as a market leader. A myriad of her suppliers compete in a monopolistic competitive sector, displaying quadratic consumers’ preferences for a differentiated good. The leader announces her markup before the suppliers choose their prices/quantities. She may restrict the range of suppliers or allow for free entry. Then, a market distortion, stemming from double marginalization and excessive variety would be softened whenever the government allows the retailer to apply an entrance fee to the suppliers, or/and per-quantity sales subsidies (doing the opposite to usual Russian regulation).
We consider a fractional 0-1 programming problem arising in manufacturing. The problem consists in clustering of machines together with parts processed on these machines into manufacturing cells so that intra-cell processing of parts is maximized and inter-cell movement is minimized. This problem is called Cell Formation Problem (CFP) and it is an NP-hard optimization problem with Boolean variables and constraints and with a fractional objective function. Because of its high computational complexity there are a lot of heuristics developed for it. In this paper we suggest a branch and bound algorithm which provides exact solutions for the CFP with a variable number of cells and grouping efficacy objective function. This algorithm finds optimal solutions for 21 of the 35 popular benchmark instances from literature and for the remaining 14 instances it finds good solutions close to the best known.

The volume is dedicated to Boris Mirkin on the occasion of his 70th birthday. In addition to his startling PhD results in abstract automata theory, Mirkin’s ground breaking contributions in various fields of decision making and data analysis have marked the fourth quarter of the 20th century and beyond. Mirkin has done pioneering work in group choice, clustering, data mining and knowledge discovery aimed at finding and describing non-trivial or hidden structures—first of all, clusters, orderings, and hierarchies—in multivariate and/or network data.
This volume contains a collection of papers reflecting recent developments rooted in Mirkin's fundamental contribution to the state-of-the-art in group choice, ordering, clustering, data mining, and knowledge discovery. Researchers, students, and software engineers will benefit from new knowledge discovery techniques and application directions.
This volume contains two types of papers—a selection of contributions from the “Second International Conference in Network Analysis” held in Nizhny Novgorod on May 7–9, 2012, and papers submitted to an "open call for papers" reflecting the activities of LATNA at the Higher School for Economics.
This volume contains many new results in modeling and powerful algorithmic solutions applied to problems in
- vehicle routing
- single machine scheduling
- modern financial markets
- cell formation in group technology
- brain activities of left- and right-handers
- speeding up algorithms for the maximum clique problem
- analysis and applications of different measures in clustering
The broad range of applications that can be described and analyzed by means of a network brings together researchers, practitioners, and other scientific communities from numerous fields such as Operations Research, Computer Science, Bioinformatics, Medicine, Transportation, Energy, Social Sciences, and more. The contributions not only come from different fields, but also cover a broad range of topics relevant to the theory and practice of network analysis. Researchers, students, and engineers from various disciplines will benefit from the state-of-the-art in models, algorithms, technologies, and techniques including new research directions and open questions.
Financial Decision Making Using Computational Intelligence covers all the recent developments in complex financial decision making through computational intelligence approaches. Computational intelligence has evolved rapidly in recent years and it is now one of the most active fields in operations research and computer science. The increasing complexity of financial problems and the enormous volume of financial data often make it difficult to apply traditional modeling and algorithmic procedures. In this context, the field of computational intelligence provides a wide range of useful techniques, including new modeling tools for decision making under risk and uncertainty, data mining techniques for analyzing complex data bases, and powerful algorithms for complex optimization problems.
This paper represents our solution for the problem of movement organization based on timetable optimization on the problematic part of railway system, i.e. single-track line. The approximate solution of this problem was founded on the heuristic method. The method gives the exact results in the case of limited amount of parameters and also can be used in the case with huge number of parameters due to reasonable computational time.
In this paper, we consider some scheduling problems on a single machine, where weighted or unweighted total tardiness has to be maximized in contrast to usual minimization problems. These problems are theoretically important and have also practical interpretations. For the weighted tardiness maximization problem, we present an NP-hardness proof and a pseudo-polynomial solution algorithm. For the unweighted total tardiness maximization problem with release dates, NP-hardness is proven. Complexity results for some other classical objective functions (e.g., the number of tardy jobs, total completion time) and various additional constraints (e.g., deadlines, weights and/or release dates of jobs may be given) are presented as well.
In this note, we consider a single machine scheduling problem with generalized total tardiness objective function. A pseudo-polynomial time solution algorithm is proposed for a special case of this problem. Moreover, we present a new graphical algorithm for another special case, which corresponds to the classical problem of minimizing the weighted number of tardy jobs on a single machine. The latter algorithm improves the complexity of an existing pseudo-polynomial algorithm by Lawler. Computational results are presented for both special cases considered.
Global Equilibrium Search (GES) is a meta-heuristic framework that shares similar ideas with the simulated annealing method. GES accumulates a compact set of information about the search space to generate promising initial solutions for the techniques that require a starting solution, such as the simple local search method. GES has been successful for many classic discrete optimization problems: the unconstrained quadratic programming problem, the maximum satisfiability problem, the max-cut problem, the multidimensional knapsack problem and the job-shop scheduling problem. GES provides state-of-the-art performance on all of these domains when compared to the current best known algorithms from the literature. GES algorithm can be naturally extended for parallel computing as it performs search simultaneously in distinct areas of the solution space. In this talk, we provide an overview of Global Equilibrium Search and discuss some successful applications.
A railway connection of two stations by a single railway track is usually found on branch lines of railway network and is very common in various manufacturing supply chains. Our paper isДля книг на иностранных языках concerned with a scheduling problem for two stations with a single railway track with one siding. On single-track railway sidings or passing loops are used to increase the capacity of the line. In our paper we developed exact optimization algorithm by analysing the structure of optimal schedule for the proposed model. The algorithm produces a schedule that completes all transportations between two stations at minimal time. We present algorithm to construct an optimal schedule in O(1) operations. Optimal schedule analyse allows the development of exact optimization algorithms with other models and objective functions, i.e. results can be generalized and used in future work for a number of regular objective functions, commonly used in scheduling.