Book
Supplementary Proceedings of the 4th International Conference on Analysis of Images, Social Networks and Texts (AIST'2015)
This volume contains proceedings of the fourth conference on Analysis of Images, Social Networks and Texts (AIST’2015)1 . The first three conferences in 2012–2014 attracted a significant number of students, researchers, academics and engineers working on interdisciplinary data analysis of images, texts, and social networks. The broad scope of AIST makes it an event where researchers from different domains, such as image and text processing, exploiting various data analysis techniques, can meet and exchange ideas. We strongly believe that this may lead to crossfertilisation of ideas between researchers relying on modern data analysis machinery. Therefore, AIST brings together all kinds of applications of data mining and machine learning techniques. The conference allows specialists from different fields to meet each other, present their work, and discuss both theoretical and practical aspects of their data analysis problems. Another important aim of the conference is to stimulate scientists and people from the industry to benefit from the knowledge exchange and identify possible grounds for fruitful collaboration. The conference was held during April 9–11, 2015. Following an already established tradition, the conference was organised in Yekaterinburg, a cross-roads between European and Asian parts of Russia, the capital of Urals region.The key topics of AIST are analysis of images and videos; natural language processing and computational linguistics; social network analysis; pattern recognition, machine learning and data mining; recommender systems and collaborative technologies; semantic web, ontologies and their applications. The Program Committee and the reviewers of the conference included wellknown experts in data mining and machine learning, natural language processing, image processing, social network analysis, and related areas from leading institutions of 22 countries including Australia, Bangladesh, Belgium, Brazil, Cyprus, Egypt, Finland, France, Germany, Greece, India, Ireland, Italy, Luxembourg, Poland, Qatar, Russia, Spain, The Netherlands, UK, USA and Ukraine.

Methods of network analysis are used in this paper for mapping the local academic community of St. Petersburg sociologists. The survey data on relations between individual scholars serve as a guide in reconstruction of the communitys network history as well as a system of independent variables in accounting for differences between its various natural zones. In this manner, the paper explores the points of convergence between Chicago school social ecology and modern social network analysis.
The article introduces a historical-sociological research project reconstructing intellectual and institutional transformations of post-soviet social sciences in the last 25 years. The projects ambition was to achieve this aim via applying classical community study research strategy and various methods derived from social science history to the case of St. Petersburg sociologists. We identified 622 individuals as St. Petersburg sociologists and traced records of their institutional trajectories, appearance in print, citing behaviour, social networks, political attitudes, sources of income, professional authorities, and attention spaces through 25 years.
Concept discovery is a Knowledge Discovery in Databases (KDD) research field that uses human-centered techniques such as Formal Concept Analysis (FCA), Biclustering, Triclustering, Conceptual Graphs etc. for gaining insight into the underlying conceptual structure of the data. Traditional machine learning techniques are mainly focusing on structured data whereas most data available resides in unstructured, often textual, form. Compared to traditional data mining techniques, human-centered instruments actively engage the domain expert in the discovery process. This volume contains the contributions to CDUD 2011, the International Workshop on Concept Discovery in Unstructured Data (CDUD) held in Moscow. The main goal of this workshop was to provide a forum for researchers and developers of data mining instruments working on issues with analyzing unstructured data. We are proud that we could welcome 13 valuable contributions to this volume. The majority of the accepted papers described innovative research on data discovery in unstructured texts. Authors worked on issues such as transforming unstructured into structured information by amongst others extracting keywords and opinion words from texts with Natural Language Processing methods. Multiple authors who participated in the workshop used methods from the conceptual structures field including Formal Concept Analysis and Conceptual Graphs. Applications include but are not limited to text mining police reports, sociological definitions, movie reviews, etc.
The current paper aims to present the Scan-4-Light study, which was conducted for the systematic scanning and analysis of the Searchlight newsletters as a rapidly growing collection of articles on trends and topics in development and poverty. Built upon the concept of the systemic foresight methodology, the Scan-4-Light approach involves the integrated use of horizon scanning, network analysis and evolutionary scenarios combined with expert consultations and workshops. The study identified the emerging trends, issues, weak signals and wild cards; created high-value visualisations to emphasize the results and findings; and produced narratives to increase the impact and awareness of the development issues. The Scan-4-Light project has resulted in a large number of specific outputs, providing the views of the Searchlight newsletters' contents at various levels of granularity. It has set out to show how the tools used here can be applied to illustrate the relationships among issues, and how these vary across countries and regions over time, and are linked to various stakeholders and possible solutions to problems. Scan-4-Light demonstrates how foresight tools and techniques can be used for the analysis of complex and uncertain issues, such as development and poverty, in a systemic way. The Scan-4-Light approach can be applied in a number of areas for scanning and identifying emerging trends and issues, and understanding the relationships between systems and solutions. The paper gives evidence that most of the issues, if not all, related to development are not isolated, but interlinked and interconnected. They require more holistic understanding and intervention with an effective collaboration between stakeholders.
Concept Relation Discovery and Innovation Enabling Technology (CORDIET), is a toolbox for gaining new knowledge from unstructured text data. At the core of CORDIET is the C-K theory which captures the essential elements of innovation. The tool uses Formal Concept Analysis (FCA), Emergent Self Organizing Maps (ESOM) and Hidden Markov Models (HMM) as main artifacts in the analysis process. The user can define temporal, text mining and compound attributes. The text mining attributes are used to analyze the unstructured text in documents, the temporal attributes use these document’s timestamps for analysis. The compound attributes are XML rules based on text mining and temporal attributes. The user can cluster objects with object-cluster rules and can chop the data in pieces with segmentation rules. The artifacts are optimized for efficient data analysis; object labels in the FCA lattice and ESOM map contain an URL on which the user can click to open the selected document.
Formal Concept Analysis (FCA) is an unsupervised clustering technique and many scientific papers are devoted to applying FCA in Information Retrieval (IR) research. We collected 103 papers published between 2003-2009 which mention FCA and information retrieval in the abstract, title or keywords. Using a prototype of our FCA-based toolset CORDIET, we converted the pdf-files containing the papers to plain text, indexed them with Lucene using a thesaurus containing terms related to FCA research and then created the concept lattice shown in this paper. We visualized, analyzed and explored the literature with concept lattices and discovered multiple interesting research streams in IR of which we give an extensive overview. The core contributions of this paper are the innovative application of FCA to the text mining of scientific papers and the survey of the FCA-based IR research.
We consider certain spaces of functions on the circle, which naturally appear in harmonic analysis, and superposition operators on these spaces. We study the following question: which functions have the property that each their superposition with a homeomorphism of the circle belongs to a given space? We also study the multidimensional case.
We consider the spaces of functions on the m-dimensional torus, whose Fourier transform is p -summable. We obtain estimates for the norms of the exponential functions deformed by a C1 -smooth phase. The results generalize to the multidimensional case the one-dimensional results obtained by the author earlier in “Quantitative estimates in the Beurling—Helson theorem”, Sbornik: Mathematics, 201:12 (2010), 1811 – 1836.
We consider the spaces of function on the circle whose Fourier transform is p-summable. We obtain estimates for the norms of exponential functions deformed by a C1 -smooth phase.
This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.