### Book

## Proceedings, Fourteenth International Conference on Principles of Knowledge Representation and Reasoning (KR-14)

The KR Conference series is a leading forum for timely in- depth presentation of progress in the theory and principles underlying the representation and computational management of knowledge. The 2014 KR conference was held as part of the Vienna Summer of Logic, a consortium of 12 conferences and 82 workshops organized by the Kurt Gödel Society at the Vienna University of Technology.

We investigate conjunctive query inseparability of description logic (DL) knowledge bases (KBs) with respect to a given signature, a fundamental problem for KB versioning, module extraction, forgetting and knowledge exchange. We study the data and combined complexity of deciding KB query inseparability for fragments of Horn-ALCHI, including the DLs underpinning OWL 2 QL and OWL 2 EL. While all of these DLs are P-complete for data complexity, the combined complexity ranges from P to EXPTIME and 2EXPTIME. We also resolve two major open problems for OWL 2 QL by showing that TBox query inseparability and the membership problem for universal UCQ-solutions in knowledge exchange are both EXPTIME-complete for combined complexity.

Boolean games are an expressive and natural formalism through which to investigate problems of strategic interaction in multiagent systems. Although they have been widely studied, almost all previous work on Nash equilibria in Boolean games has focused on the restricted setting of pure strategies. This is a shortcoming as finite games are guaranteed to have at least one equilibrium in mixed strategies, but many simple games fail to have pure strategy equilibria at all. We address this by showing that a natural decision problem about mixed equilibria: determining whether a Boolean game has a mixed strategy equilibrium that guarantees every player a given payoff, is NEXP-hard. Accordingly, the epsilon variety of the problem is NEXP-complete. The proof can be adapted to show coNEXP-hardness of a similar question: whether all Nash equilibria of a Boolean game guarantee every player at least the given payoff.

This paper devoted to Russian scientist Alexander Schukarev and his work on logical machine. Historically, this work may be divided on two periods – before and after Russian October revolution. We try to understand and explain why Schukarev's activity in this field was ceased and his logical machine was forgotten for the long time.

This book constitutes the refereed proceedings of the 10th International Conference on Formal Concept Analysis, ICFCA 2012, held in Leuven, Belgium in May 2012. The 20 revised full papers presented together with 6 invited talks were carefully reviewed and selected from 68 submissions. The topics covered in this volume range from recent advances in machine learning and data mining; mining terrorist networks and revealing criminals; concept-based process mining; to scalability issues in FCA and rough sets.

In modern society, skills of working with information play a significant role. The influence of information in our everyday lives is rapidly increasing, while methods of data processing remain the same.

Research is being directed at problems of data processing and visualization of information, which become more popular with each year. This paper describes infological models, a new method of data visualization and information processing based on technologies of information presentation, as well as on principles of semantic networks, open data and data banks.

The technology of infological models represents a new approach to data storage and exchange which enables us to look at information processing in a new way. Based on principles of open data, semantic networks and data banks, the concept seeks to define the set of entities and relations, based on which an independent information block is displayed as a block diagram, which is easy to understand for an average user with a computer.

This work provides a brief overview of the information overload problem, describes the technology of infological models, its general principles and contains an application of mentioned methods in e-commerce using the example of knowledge bases, news portals, on-line shops, smart house and Internet of Things, with description of features and advantages, ending with an overall conclusion.

This book constitutes the second part of the refereed proceedings of the 10th International Conference on Formal Concept Analysis, ICFCA 2012, held in Leuven, Belgium in May 2012. The topics covered in this volume range from recent advances in machine learning and data mining; mining terrorist networks and revealing criminals; concept-based process mining; to scalability issues in FCA and rough sets.

The aim of this paper is to discuss the dichotomy of formal and informal styles of reasoning in the perspective of practical turn in logic. The heuristic potential of the concept "image of logic" introduced by I.N. Griftsova for the critics of essentialist theories of formality will be revealed

Human reasoning uses to distinguish things that do change and things do not. The latter are commonly expressed in the reasoning as objects, which may represent classes or instances, and classes being further divided into concept types and relation types. These became the main issue of knowledge engineering and have been well tractable by computer. The former kind of things, meanwhile, inevitably evokes consideration not only of a ``thing-that-changes'' but also of ``change-of-a-thing'' and thus claims that the change itself be another entity that needs to be comprehended and handled. This special entity, being treated from different perspectives as event, (changeable) state, transformation, process, scenario and the like, remains a controversial philosophical, linguistic and scientific entity and has gained notably less systematic attention by knowledge engineers than non-changing things. In particular, there is no clarity in how to express the change in knowledge engineering -– as some specific concept or relation type, as a statement, or proposition, in which subject is related to predicate(s), or in another way. There seems to be an agreement among the scientists that time has to be related, explicitly or implicitly, to everything we regard as change -– but the way it should be related, and whether this should be exactly the time or some generic property or condition, is also an issue of debate. To bring together the researchers who study representation of change in knowledge engineering both in fundamental and applied aspects, a workshop on Modeling States, Events, Processes and Scenarios (MSEPS 2013) was run on 12 January, 2013, in the framework of the 20th International Conference on Conceptual Structures (ICCS 2013) in Mumbai, India. Seven submissions were selected for presentation that cover major approaches to representation of the change and address such diverse domains of knowledge as biology, geology, oceanography, physics, chemistry and also some multidisciplinary contexts. Concept maps of biological and other transformations were presented by Meena Kharatmal and Nagarjuna Gadiradju. Their approach stems from conceptual graphs of Sowa and represents the vision of change as a particular type of concept or, likely, relation, defined by meaning rather than by formal properties. The work of Prima Gustiene and Remigijus Gustas follows a congenial approach but develops a different notation for representation of the change based on specified actor dependencies in application to business issues concerning privacy-related data. Nataly Zhukova, Oksana Smirnova and Dmitry Ignatov explore the structure of oceanographic data in concern of opportunity of their representation by event ontologies and conceptual graphs. Vladimir Anokhin and Biju Longhinos examine another Earth science, geotectonics, and demonstrate that its long-lasting methodological problems urge application of knowledge engineering methods, primarily engineering of knowledge about events and processes. They suggest a draft of application strategy of knowledge engineering in geotectonics and claim for a joint interdisciplinary effort in this direction. Doji Lokku and Anuradha Alladi introduce a concept of ``purposefulness'' for any human action and suggest a modeling approach based on it in the systems theory context. In this approach, intellectual means for reaching a purpose are regarded either as structure of a system, in which the purpose is achieved, or as a process that takes place in this system. These means are exposed to different concerns of knowledge, which may be either favorable or not to achieving the purpose. The resulting framework perhaps can be described in a conceptual-graph-related way but is also obviously interpretable as a statement-based pattern, more or less resembling the event bush (Pshenichny et al., 2009). This binds all the aforementioned works with the last two contributions, which represent an approach based on understanding of the change as a succession of events (including at least one event), the latter being expressed as a statement with one subject and finite number of predicates. The method of event bush that materializes this approach, previously applied mostly in the geosciences, is demonstrated here in application to physical modeling by Cyril Pshenichny, Roberto Carniel and Paolo Diviacco and to chemical and experimental issues, by Cyril Pshenichny. The reported results and their discussion form an agenda for future meetings, discussions and publications. This agenda includes, though is not limited to, - logical tools for processes modeling, - visual notations for dynamic knowledge representation, - graph languages and graph semantics, - semantic science applications, - event-driven reasoning, - ontological modeling of events and time, - process mining, - modeling of events, states, processes and scenarios in particular domains and interdisciplinary contexts. The workshop has marked the formation of a new sub-discipline in the knowledge engineering, and future effort will be directed to consolidate its conceptual base and transform the existing diversity of approaches to representation of the change into an arsenal of complementary tools sharpened for various spectral regions of tasks in different domains.

*The principle that logic provides norms for reasoning is a traditional basis for demarcating the bounds of logic as a discipline. Nowadays, the role of logic in ‘everyday reasoning’ has been challenged. The main aim of this study is to show the advantages of shifting focus towards dynamic model of normativity. *

Infological models represent the new, intuitive way of delivering information, which allows to improve perception, analysis and sharing of data at the expense of a coherent interactive graph, well-accessible for the human.

This work is devoted to the potential effect of applying infological models in e-business and prospects, opened by their implementation.

During the last three decades, formal concept analysis (FCA) became a well-known formalism in data analysis and knowledge discovery because of its usefulness in important domains of knowledge discovery in databases (KDD) such as ontology engineering, association rule mining, machine learning, as well as relation to other established theories for representing knowledge processing, like description logics, conceptual graphs, and rough sets. In early days, FCA was sometimes misconceived as a static crisp hardly scalable formalism for binary data tables. In this paper, we will try to show that FCA actually provides support for processing large dynamical complex (may be uncertain) data augmented with additional knowledge.

We consider certain spaces of functions on the circle, which naturally appear in harmonic analysis, and superposition operators on these spaces. We study the following question: which functions have the property that each their superposition with a homeomorphism of the circle belongs to a given space? We also study the multidimensional case.

We consider the spaces of functions on the m-dimensional torus, whose Fourier transform is p -summable. We obtain estimates for the norms of the exponential functions deformed by a C1 -smooth phase. The results generalize to the multidimensional case the one-dimensional results obtained by the author earlier in “Quantitative estimates in the Beurling—Helson theorem”, Sbornik: Mathematics, 201:12 (2010), 1811 – 1836.

We consider the spaces of function on the circle whose Fourier transform is p-summable. We obtain estimates for the norms of exponential functions deformed by a C1 -smooth phase.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.