### Book

## Numerical Mathematics and Advanced Applications - ENUMATH 2013

This book gathers a selection of invited and contributed lectures from the European Conference on Numerical Mathematics and Advanced Applications (ENUMATH) held in Lausanne, Switzerland, August 26-30, 2013. It provides an overview of recent developments in numerical analysis, computational mathematics and applications from leading experts in the field. New results on finite element methods, multiscale methods, numerical linear algebra and discretization techniques for fluid mechanics and optics are presented. As such, the book offers a valuable resource for a wide range of readers looking for a state-of-the-art overview of advanced techniques, algorithms and results in numerical mathematics and scientific computing.

The time-dependent Schrödinger equation is the key one in many fields. It should be often solved in unbounded space domains. Several approaches are known to deal with such problems using approximate transparent boundary conditions (TBCs) on the artificial boundaries. Among them, there exist the so-called discrete TBCs whose advantages are the complete absence of spurious reflections, reliable computational stability, clear mathematical background and the corresponding rigorous stability theory. In this paper, the Strang-type splitting with respect to the potential is applied to three two-level schemes with different discretizations in space having the approximation order $O(\tau^2+|h|^k)$, $k=2$ or 4. Explicit forms of the discrete TBCs are given and results on existence, uniqueness and uniform in time $L^2$-stability of solutions are stated in a unified manner. Due to splitting, an effective direct algorithm to implement the schemes is presented for general potential.

We consider the problem of a viscous incompressible fluid flow along a flat plate with a small solitary perturbation (of hump, step, or corner type) for large Reynolds numbers. We obtain an asymptotic solution in which the boundary layer has a double-deck structure.

Proceedings include extended abstracts of reports presented at the III International Conference on Optimization Methods and Applications “Optimization and application” (OPTIMA-2012) held in Costa da Caparica, Portugal, September 23—30, 2012.

The volume is dedicated to Stephen Smale on the occasion of his 80th birthday. Besides his startling 1960 result of the proof of the Poincaré conjecture for all dimensions greater than or equal to five, Smale’s ground breaking contributions in various fields in Mathematics have marked the second part of the 20th century and beyond. Stephen Smale has done pioneering work in differential topology, global analysis, dynamical systems, nonlinear functional analysis, numerical analysis, theory of computation and machine learning as well as applications in the physical and biological sciences and economics. In sum, Stephen Smale has manifestly broken the barriers among the different fields of mathematics and dispelled some remaining prejudices. He is indeed a universal mathematician. Smale has been honored with several prizes and honorary degrees including, among others, the Fields Medal(1966), The Veblen Prize (1966), the National Medal of Science (1996) and theWolf Prize (2006/2007).

Optimization, simulation and control are very powerful tools in engineering and mathematics, and play an increasingly important role. Because of their various real-world applications in industries such as finance, economics, and telecommunications, research in these fields is accelerating at a rapid pace, and there have been major algorithmic and theoretical developments in these fields in the last decade.

This volume brings together the latest developments in these areas of research and presents applications of these results to a wide range of real-world problems.

- Collection of selected contributions giving a state-of-the-art account of recent developments in the field - Covers a broad range of topics in optimization and optimal control, including unique applications - Written by an international group of experts in their respective disciplines - Broad audience of researchers, practitioners, and advanced graduate students in applied mathematics and engineeringA fluid flow along a semi-infinite plate with small periodic irregularities on the surface is considered for large Reynolds numbers. The boundary layer has a double-deck structure: a thin boundary layer (“lower deck”) and a classical Prandtl boundary layer (“upper deck”). The aim of this paper is to prove the existence and uniqueness of the stationary solution of a Rayleigh-type equation, which describes oscillations of the vertical velocity component in the classical boundary layer.

A fluid flow along a plate with small irregularities on the surface is considered for large Reynolds numbers. The boundary layer has a double-deck structure, i.e., both a thin boundary layer and the classical Prandtl boundary layer are present. It is proved that the solution of the boundary-value problem thus obtained exists and is unique in the Prandtl boundary layer, and the stability of the solution is investigated at large times. The results of numerical modeling are given. Supported by the Basic Research Program of the National Research University “Higher School of Economics.” © 2015, Pleiades Publishing, Ltd.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.

A form for an unbiased estimate of the coefficient of determination of a linear regression model is obtained. It is calculated by using a sample from a multivariate normal distribution. This estimate is proposed as an alternative criterion for a choice of regression factors.