### Book

## CSR 2014 : 9th International Computer Science Symposium in Russia. Proceedings

The paper [Harry Buhrman, Michal Kouck ́, Nikolay Vereshcha- y gin. Randomized Individual Communication Complexity. IEEE Con- ference on Computational Complexity 2008: 321-331] considered com- munication complexity of the following problem. Alice has a bi- nary string x and Bob a binary string y, both of length n, and they want to compute or approximate Kolmogorov complexity C(x|y) of x conditional to y. It is easy to show that deterministic communica- tion complexity of approximating C(x|y) with precision α is at least n − 2α − O(1). The above referenced paper asks what is random- ized communication complexity of this problem and shows that for r- round randomized protocols its communication complexity is at least Ω((n/α)1/r ). In this paper, for some positive ε, we show the lower bound 0.99n for (worst case) communication length of any random- ized protocol that with probability at least 0.01 approximates C(x|y) with precision εn for all input pairs.

The number of space objects will grow several times in a few years due to the planned launches of constellations of thousands microsatellites. It leads to a significant increase in the threat of satellite collisions. Spacecraft must undertake collision avoidance maneuvers to mitigate the risk. According to publicly available information, conjunction events are now manually handled by operators on the Earth. The manual maneuver planning requires qualified personnel and will be impractical for constellations of thousands satellites. In this paper we propose a new modular autonomous collision avoidance system called "Space Navigator". It is based on a novel maneuver optimization approach that combines domain knowledge with Reinforcement Learning methods.

Heaps are well-studied fundamental data structures, having myriads of applications, both theoretical and practical. We consider the problem of designing a heap with an “optimal” extract-min operation. Assuming an arbitrary linear ordering of keys, a heap with n elements typically takes O(log n) time to extract the min-imum. Extracting all elements faster is impossible as this would violate the Ω(n log n) bound for comparison-based sorting. It is known, however, that is takes only O(n + k log k) time to sort just k smallest elements out of n given, which prompts that there might be a faster heap, whose extract-min performance depends on the number of elements extracted so far. In this paper we show that is indeed the case. We present a version of heap that performs insert in O(1) time and takes only O(log ∗ n + log k) time to carry out the k-th extraction (where log ∗ denotes the iterated logarithm). All the above bounds are worst-case.

The article examines the problems of defining the term computer simulations of scientific experiments. The first part analyzes the original method for classifying variations of terms proposed by Duran as the most successful for demonstrating significant existing contradictions among philosophers regarding the place and role of computer simulations in the philosophy of science. In the second part of the article, the term itself is formulated by the author through the identification of the main features of computer simulations as a result of studying the nature of experimental data as transferring traces of an experiment from a graphematical space to a representative one. Following the concept of transposition, the author derives a relevant term from the essence of computer simulations revealed by him, claiming a new epistemological significance for such kind of scientific experiments for the philosophy of science.

Modern cybernetics and computer engineering papers and topics are presented in the proceedings. This proceedings is a Vol. 3 of the Computer Science On-line Conference proceedings. Papers in this part discuss modern cybernetics and applied informatics in technical systems. This book constitutes the refereed proceedings of the Applied Informatics and Cybernetics in Intelligent Systems section of the 9th Computer Science On-line Conference 2020 (CSOC 2020), held on-line in April 2020. CSOC 2020 has received (all sections) more than 270 submissions from more than 35 countries. More than 65% of accepted submissions were received from Europe, 21% from Asia, 8% from Africa, 4% from America and 2% from Australia. CSOC 2020 conference intends to provide an international forum for the discussion of the latest high-quality research results in all areas related to Computer Science. Computer Science On-line Conference is held on-line, and modern communication technology, which are broadly used, improves the traditional concept of scientific conferences. It brings equal opportunity to participate for all researchers around the world.

Data management and analysis is one of the fastest growing and most challenging areas of research and development in both academia and industry. Numerous types of applications and services have been studied and re-examined in this field resulting in this edited volume which includes chapters on effective approaches for dealing with the inherent complexity within data management and analysis. This edited volume contains practical case studies, and will appeal to students, researchers and professionals working in data management and analysis in the business, education, healthcare, and bioinformatics areas.

Abstract:

Nowadays environmental science experiences tremendous growth of raster data: N-dimensional (N-d) arrays coming mainly from numeric simulation and Earth remote sensing. An array DBMS is a tool to streamline raster data processing. However, raster data are usually stored in files, not in databases. Moreover, numerous command line tools exist for processing raster files. This paper describes a distributed array DBMS under development that partially delegates raster data processing to such tools. Our DBMS offers a new N-d array data model to abstract from the files and the tools and processes data in a distributed fashion directly in their native file formats. As a case study, popular satellite altimetry data were used for the experiments carried out on 8- and 16-nodes clusters in Microsoft Azure Cloud. New array DBMS is up to 70× faster than SciDB which is the only freely available distributed array DBMS to date.

Abstract

Relativisation involves dependencies which, although unbounded, are constrained with respect to certain island domains. The Lambek calculus **L** can provide a very rudimentary account of relativisation limited to unbounded peripheral extraction; the Lambek calculus with bracket modalities **Lb** can further condition this account according to island domains. However in naïve parsing/theorem-proving by backward chaining sequent proof search for **Lb** the bracketed island domains, which can be indefinitely nested, have to be specified in the linguistic input. In realistic parsing word order is given but such hierarchical bracketing structure cannot be assumed to be given. In this paper we show how parsing can be realised which induces the bracketing structure in backward chaining sequent proof search with **Lb**.

We assess and compare computer science skills among final-year computer science undergraduates (seniors) in four major economic and political powers that produce approximately half of the science, technology, engineering, and mathematics graduates in the world. We find that seniors in the United States substantially outperform seniors in China, India, and Russia by 0.76–0.88 SDs and score comparably with seniors in elite institutions in these countries. Seniors in elite institutions in the United States further outperform seniors in elite institutions in China, India, and Russia by ∼0.85 SDs. The skills advantage of the United States is not because it has a large proportion of high-scoring international students. Finally, males score consistently but only moderately higher (0.16–0.41 SDs) than females within all four countries.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.