### ?

## Foliations 2012

Singapore :
World Scientific, 2013.

Zhukova N., , in : Foliations 2012. : Singapore : World Scientific, 2013. P. 215-233.

As an application of our previous results we prove theorems of local and global stability of leaves in sense of Ehresmann and Reeb for conformal foliations of codimention $q>2$. It has been shown that for transversally affine foliations the analogous statements on noncompact closed leaves are not valid. We also remind our rusults about local ...

Added: September 29, 2014

Zhukova N., Journal of Mathematical Sciences 2015 Vol. 208 No. 1 P. 115-130

We study the problem of classification of complete non-Riemannian conformal foliations
of codimension q > 2 with respect to transverse equivalence. It is proved that two
such foliations are transversally equivalent if and only if their global holonomy groups
are conjugate in the group of conformal transformations of the q-dimensional sphere
Conf (Sq). Moreover, any countable essential subgroup of ...

Added: December 11, 2017

Zhukova N., Математический сборник 2012 Т. 203 № 3 С. 79-106

Доказано, что любое полное конформное слоение (M,F) коразмерности q> 2 является либо римановым, либо (Conf(S^q),S^q)-слоением. Если (M,F) не является римановым слоением, то оно имеет глобальный аттрактор, представляющий собой либо нетривиальное минимальное множество, либо один замкнутый слой или объединение двух замкнутых слоев. При этом компактность многообразия M не предполагается. В частности, каждое собственное полное конформное не риманово ...

Added: September 28, 2014

N. I. Zhukova, Sbornik Mathematics 2012 Vol. 203 No. 2 P. 380-405

We prove that every complete foliation (M, F) of codimension q > 1 is either Riemannian or a (Conf (S^q), S^q)-foliation. We further prove that if (M, F) is not Riemannian, it has a global attractor which is either a nontrivial minimal set or a closed leaf or a union of two closed leaves. In ...

Added: October 19, 2014

Bazaikin Y., Galaev A., Zhukova N., Chaos 2020 Vol. 30 P. 1-9

Chaotic foliations generalize Devaney's concept of chaos for
dynamical systems. The property of a foliation to
be chaotic is transversal. The existence problem of chaos for a Cartan foliation
is reduced to the corresponding problem for its holonomy pseudogroup of
local automorphisms of a transversal manifold. Chaotic foliations with transversal Cartan ...

Added: October 6, 2020

Zhukova N.I., K. I. Sheina, Basic automorphism groups of complete Cartan foliations covered by fibrations / Cornell University. Series math "arxiv.org". 2015. No. 1410.1144 .

We get sufficient conditions for the full basic automorphism group of a complete
Cartan foliation to admit a unique (finite-dimensional) Lie group structure in the category
of Cartan foliations. In particular, we obtain sufficient conditions for this group
to be discrete. Emphasize that the transverse Cartan geometry may be noneffective.
Some estimates of the dimension of this group depending ...

Added: November 10, 2014

Dolgonosova A., Журнал Средневолжского математического общества 2017 Т. 19 № 1 С. 19-29

The subject of this article is a review of the results on foliations with transversal linear connection obtained by the author together with N.I. Zhukova, and their comparison with the results of other authors. The work consists of three parts. The first part focuses on to automorphism groups of foliations with a transversal linear connection ...

Added: June 13, 2017

Zhukova N., , in : Foliations 2012. : Singapore : World Scientific, 2013. P. 215-233.

As an application of our previous results we prove theorems of local and global stability of leaves in sense of Ehresmann and Reeb for conformal foliations of codimention $q>2$. It has been shown that for transversally affine foliations the analogous statements on noncompact closed leaves are not valid. We also remind our rusults about local ...

Added: September 29, 2014

Zhukova N., Journal of Physics: Conference Series 2018 Vol. 990 No. 1 P. 1-15

A foliation that admits a Weyl structure arising from a pseudo-Riemannian metric of any signature as its transverse structure is called a pseudo-Riemannian Weyl foliation or (for short) a Weyl foliation. We investigate codimension q ≥ 2 Weyl foliations on (not necessarily compact) manifolds. Different interpretations of their holonomy groups are given. We prove a ...

Added: April 1, 2018

Н.И. Жукова, Mathematical Notes (Rusian Federation) 2013 Т. 93 № 6 С. 994-996

In this paper a unified method for studying foliations with transversal psrsbolic geometry of rank one is presented.
Ideas of Fraces' paper on parabolic geometry of rank one and of works of the author on conformal foliations
are developed. ...

Added: September 28, 2014

Zhukova N. I., Mathematical notes 2013 Vol. 93 No. 5-6 P. 928-931

In this paper a unified method for studying foliations with transversal parabolic geometry of rank one is presented.
Ideas of Fraces' paper on parabolic geometry of rank one and of works of the author on conformal foliations
are developed. ...

Added: October 19, 2014

Н.И. Жукова, Шеина К. И., Труды Математического центра им. Н.И. Лобачевского 2014 Т. 50 С. 74-76

We investigate Cartan foliations covered by fibrations. We obtain a sufficient condition for the full
basic automorphism group of a complete Cartan foliation covered by fibration to admit a
unique (finite-dimensional) Lie group structure in the category of
Cartan foliations. The explicit new formula for determining its basic automorphism
Lie group is given. Examples of computing the full basic ...

Added: November 12, 2014

N. I. Zhukova, Journal of Mathematical Sciences 2016 Vol. 219 No. 1 P. 112-124

We consider a Cartan foliation (M,F) of an arbitrary codimension q admitting an
Ehresmann connection such that all leaves of (M,F) are embedded submanifolds of M.
We prove that for any foliation (M,F) there exists an open, not necessarily connected,
saturated, and everywhere dense subset M0 of M and a manifold L0 such that the induced
foliation (M0, FM0) ...

Added: October 21, 2016

Zhukova N., Journal of Mathematical Sciences 2015 Vol. 208 No. 1 P. 115-130

We study the problem of classification of complete non-Riemannian conformal foliations of codimension q > 2 with respect to transverse equivalence. It is proved that two such foliations are transversally equivalent if and only if their global holonomy groups are conjugate in the group of conformal transformations of the q-dimensional sphere Conf (Sq). Moreover, any ...

Added: June 6, 2015

N.I. Zhukova, Journal of Mathematical Physics, Analysis, Geometry 2013 Vol. 9 No. 3 P. 400-420

The equivalence between local stability and completeness and Quasi-analyticity is proved for an arbitrary compact foliation. We prove that a compact foliation Locally stable if and only if it admits an Ehresmann connection and has a quasi-analytical holonomy pseudo-group. As an application we prove the local stability of complete compact foliations with a rigid transverse ...

Added: October 2, 2014

А.Ю. Долгоносова .., Н.И. Жукова, Труды Математического центра им. Н.И. Лобачевского 2013 Т. 47 С. 43-46

Different equivalent approaches to the notion of a foliation with transverse linear connection are
represented. ...

Added: October 18, 2014

Zhukova N., Журнал Средневолжского математического общества 2018 Т. 20 № 4 С. 395-407

It is shown that the structural theory of Molino for Riemannian foliations on compact
manifolds and complete Riemannian manifolds is generalized to Riemannian foliations with
Ehresmann connection. There are no restrictions on the codimension of the foliation
and the dimension of the foliated manifold.
For a Riemannian foliation $(M, F)$ with Ehresmann connection
it is proved that the closure of ...

Added: December 27, 2019

N. I. Zhukova, Труды Математического института им. В.А. Стеклова РАН 2012 Т. 278 С. 102-113

We prove that any compact manifold whose fundamental group contains an abelian normal subgroup of positive rank can be represented as a leaf of a structurally stable suspended foliation on a compact manifold. In this case, the role of a transversal manifold can be played by an arbitrary manifold. We construct examples of structurally stable ...

Added: September 28, 2014

Nina I. Zhukova, Anna Yu. Dolgonosova .., Central European Journal of Mathematics 2013 Vol. 11 No. 12 P. 2076-2088

The category of foliations is considered. In this category
morphisms are differentiable mappings transforming leaves of one
foliation into leaves of the other foliation.
We proved that the automorphism group of the foliations
admitting a transverse linear connection is an infinite-dimensional
Lie group modeled on $LF$-spaces. This result extends the corresponding
result of Macias-Virgos and Sanmartin for Riemannian foliations.
In particular, our ...

Added: September 28, 2014

Zhukova N. I., Proceedings of the Steklov Institute of Mathematics 2012 Vol. 278 No. 1 P. 94-105

We prove that any compact manifold whose fundamental group contains an abelian normal subgroup of positive rank can be represented as a leaf of a structurally stable suspended foliation on a compact manifold. In this case, the role of a transversal manifold can be played by an arbitrary manifold. We construct examples of structurally stable ...

Added: October 19, 2014

Zhukova N., Chebochko N., Известия высших учебных заведений. Математика 2020 № 11 С. 87-92

The aim of this work is to describe the structure of complete Lorentzian foliations $(M, F)$ of codimension two
on $n$-dimensional closed manifolds. It is proved that $(M, F)$ is either Riemannian or has a constant
transversal curvature and its structure is described. For such foliations $(M, F)$, the criterion is obtained,
reducing the chaos problem in $(M, ...

Added: October 6, 2020

Zhukova N., Труды Московского физико-технического института 2017 Т. 9 № 4 С. 132-141

Complete transversely affine foliations are studied. The strong transversal equivalence of
complete affine foliations is investigated, which is a more refined notion than the transverse
equivalence of foliations in the sense of Molino. A global holonomy group of a complete
affine foliations is determined and it is proved that this group is the complete invariant
of the foliation relatively ...

Added: November 28, 2017

Nina. I. Zhukova, Galaev A., Attractors of Cartan foliation / Cornell University. Series math "arxiv.org". 2017.

The paper is focused on the existence problem of attractors for foliations. Since the existence of an attractor is a transversal property of the foliation, it is natural to consider foliations admitting transversal geometric structures. As transversal structures are chosen Cartan geometries due to their universality. The existence problem of an attractor on a complete ...

Added: March 23, 2017

Zhukova N., Applied Mathematics and Nonlinear Sciences 2020 Vol. 5 No. 2 P. 279-292

The purpose of this article is to review the author's results on the existence and
structure of minimal sets and attractors of conformal foliations of codimension $q,$ ${q\geq 3.}$
Results on strong transversal equivalence of conformal foliations are also presented.
Connections with works of other authors are indicated. Examples of conformal foliations with
exceptional, exotic and regular minimal sets ...

Added: December 30, 2019

Багаев А. В., Zhukova N., Известия высших учебных заведений. Поволжский регион. Физико-математические науки 2017 № 4 (44) С. 35-47

Actuality and goals. The Lorentzian geometry is radically different from the Riemannian geometry and finds widespread application in various physical theories. The goal of this work is to investigate the structure of transversely analytical Lorentzian foliations (M,F) of codimension two on n-dimensional manifolds.
Methods. The methods of foliated bundles and holonomy pseudogroups are applied.
Results. We prove ...

Added: November 15, 2017