• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
Of all publications in the section: 2
Sort:
by name
by year
Article
Moshkova M., Divochiy A., Morozov P. et al. Journal of the Optical Society of America B: Optical Physics. 2019. Vol. 36. No. 3. P. B20-B25.

The use of improved fabrication technology, highly disordered NbN thin films, and intertwined section topology makes it possible to create high-performance photon-number-resolving superconducting single-photon detectors (PNR SSPDs) that are comparable to conventional single-element SSPDs at the telecom range. The developed four-section PNR SSPD has simultaneously an 86±3%86±3% system detection efficiency, 35 cps dark count rate, ∼2  ns∼2  ns dead time, and maximum 90 ps jitter. An investigation of the PNR SSPD’s detection efficiency for multiphoton events shows good uniformity across sections. As a result, such a PNR SSPD is a good candidate for retrieving the photon statistics for light sources and quantum key distribution systems.

Added: Jan 9, 2019
Article
Berman O. L., Kezerashvili R. Y., Yurii E. Lozovik. Journal of the Optical Society of America B: Optical Physics. 2017. Vol. 34. P. 1649-1658.

The condensate density profile of trapped two-dimensional gas of photons in an optical microcavity, filled by a dye solution, is analyzed taking into account a coordinate-dependent effective mass of cavity photons and photon–photon coupling parameter. The profiles for the densities of the superfluid and normal phases of trapped photons in the different regions of the system at the fixed temperature are analyzed. The radial dependencies of local mean-field phase transition temperature T0cr and local Kosterlitz–Thouless transition temperature Tcr for trapped microcavity photons are obtained. The coordinate dependence of cavity photon effective mass and photon–photon coupling parameter is important for the mirrors of smaller radius with the high trapping frequency, which provides Bose–Einstein condensation and superfluidity for smaller critical number of photons at the same temperature. We discuss a possibility of an experimental study of the density profiles for the normal and superfluid components in the system under consideration.

Added: Nov 28, 2017