### ?

## Oracle Complexity Separation in Convex Optimization

Many convex optimization problems have structured objective functions written as a sum of functions with different oracle types (e.g., full gradient, coordinate derivative, stochastic gradient) and different arithmetic operations complexity of these oracles. In the strongly convex case, these functions also have different condition numbers that eventually define the iteration complexity of first-order methods and the number of oracle calls required to achieve a given accuracy. Motivated by the desire to call more expensive oracles fewer times, we consider the problem of minimizing the sum of two functions and propose a generic algorithmic framework to separate oracle complexities for each function. The latter means that the oracle for each function is called the number of times that coincide with the oracle complexity for the case when the second function is absent. Our general accelerated framework covers the setting of (strongly) convex objectives, the setting when both parts are given through full coordinate oracle, as well as when one of them is given by coordinate derivative oracle or has the finite-sum structure and is available through stochastic gradient oracle. In the latter two cases, we obtain accelerated random coordinate descent and accelerated variance reduced methods with oracle complexity separation.