### Article

## A minimal approach to the theory of global attractors

For a semigroup $S(t):X\to X$ acting on a metric space $(X,\dist)$, we give a notion of global attractor

based only on the minimality with respect to the attraction property. Such an attractor is shown to be invariant whenever $S(t)$ is

asymptotically closed. As a byproduct, we generalize earlier results on the existence of global attractors in the classical sense.

The problem mentioned in the title is studied.

Analysis of mathematical works of A.G. Kostyuchenko.

We consider the first boundary value problem for elliptic systems defined in unbounded domains, which solutions satisfy the condition of finiteness of the Dirichlet integral also called the energy integral.

In this paper we study attractors of skew products, for which the following dichotomy is ascertained. These attractors either are not asymptotically stable or possess the following two surprising properties. The intersection of the attractor with some invariant submanifold does not coincide with the attractor of the restriction of the skew product to this submanifold but contains this restriction as a proper subset. Moreover, this intersection is thick on the submanifold, that is, both the intersection and its complement have positive relative measure. Such an intersection is called a bone, and the attractor itself is said to be bony. These attractors are studied in the space of skew products. They have the important property that, on some open subset of the space of skew products, the set of maps with such attractors is, in a certain sense, prevalent, i. e., "big." It seems plausible that attractors with such properties also form a prevalent subset in an open subset of the space of diffeomorphisms.

We consider the first boundary value problem for elliptic systems defined in unbounded domains, which solutions satisfy the condition of finiteness of the Dirichlet integral also called the energy integral.

In the present paper we study the boundary control by the third boundary condition on the left end of a string, the right end being fixed. An optimality criterion based on the minimization of an integral of a linear combination of the control itself and its antiderivative raised to an arbitrary power *p*≥1 is established. A method is developed permitting one to find a control satisfying this optimality criterion and write it out in the explicit form. The optimal control for *p*>1 is proved. Thereby proposed optimality criterion uniquely determines the optimal solution of boundary control problem under consideration.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.