### Article

## Motives and representability of algebraic cycles on threefolds over a field

We study links between algebraic cycles on threefolds and finite-dimensionality of their motives with coefficients in Q. We decompose the motive of a non-singular projective threefold X with representable algebraic part of CH_0(X) into Lefschetz motives and the Picard motive of a certain abelian variety, isogenous to the corresponding intermediate Jacobian J^2(X) when the ground field is C. In particular, it implies motivic finite-dimensionality of Fano threefolds over a field. We also prove representability of zero-cycles on several classes of threefolds fibered by surfaces with algebraic H^2. This gives another new examples of three-dimensional varieties whose motives are finite-dimensional.

The article discusses matter of activity on comprehension of life experience. A definition of that activity is given and its status as holistic independent activity, which lasts through the entire human life is discussed from positions of cultural-activity theory. Motive, actions and operations of this activity are clarified, forms (individual or joint with others), levels (spontaneous and conscious) and fields of comprehension of life experience are described. As main result of this activity is discussed forming of individual vital world of a person.

Full papers (articles) of 2nd Stochastic Modeling Techniques and Data Analysis (SMTDA-2012) International Conference are represented in the proceedings. This conference took place from 5 June by 8 June 2012 in Chania, Crete, Greece.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.