### Article

## Алгебраический метод нахождения управлений в задаче дифференциальной игры

The problem of management of the nonlinear object which is exposed to impact of uncontrollable indignations, is considered in a key of differential game. Synthesis of optimum managements is made with application of transformation of the nonlinear equation of initial object in the differential equation with the parameters depending on a condition. The square-law functional of quality allows to formulate synthesis conditions in the form of need of search of solutions of the equation of Rikkati. The solution of the equation of Rikkati with the parameters depending on a condition, is in a symbolical view with application of algebraic methods that allows to generalize a number of earlier published theoretical results, to receive rather constructive decisions in a number of statements of problems of management.

*Full text (DOC, 734 Kb)*

The problem of optimal control for a class of nonlinear objects with uncontrolled bounded disturbances is formulated in the key differential game. For problems with a quadratic quality functional task of searching for the optimal control reduces the need to find solutions to the scalar partial differential equation Hamilton-Jacobi-Isaacs. Finding solutions to this equation in tempo operation of the facility by means of special algorithmic procedures. The results can be used to solve theoretical and practical problems encountered in mathematics, mechanics, physics, biology, chemistry, engineering sciences, management and navigation.

In this paper, we consider two scheduling problems on a single machine, where a specific objective function has to be maximized in contrast to usual minimization problems. We propose exact algorithms for the single machine problem of maximizing total tardiness 1‖max-ΣT j and for the problem of maximizing the number of tardy jobs 1‖maxΣU j . In both cases, it is assumed that the processing of the first job starts at time zero and there is no idle time between the jobs. We show that problem 1‖max-ΣT j is polynomially solvable. For several special cases of problem 1‖maxΣT j , we present exact polynomial algorithms. Moreover, we give an exact pseudo-polynomial algorithm for the general case of the latter problem and an alternative exact algorithm.

The purpose of this book is to acquaint the reader with the developments in bilinear systems theory and its applications. Bilinear systems can be used to represent a wide range of physical, chemical, biological, and social systems, as well as manufacturing processes, which cannot be effectively modeled under the assumption of linearity. This book provides a unified approach for the identification and control of nonlinear complex objects that can be transformed into bilinear systems, with a focus on the control of open physical processes functioning in a non-equilibrium mode. A wide class of non-linear control systems can be approximated using novel algorithms motivated by bilinear models. The goal of this book is to describe new methods, heuristics, and optimality criteria with less demanding computational complexity than exact criteria that result in robust adaptive algorithms. Emphasis is placed on three primary disciplines influencing bilinear systems theory: modern differential geometry, control of dynamical systems, and optimization theory.

We describe a simple implementation of the Takagi factorization of symmetric matrices $A = U\Lambda U^T$ with unitary $U$ and diagonal $\Lambda$ in terms of the square root of an auxiliary unitary matrix and the singular value decomposition of $A$. The method is based on an algebraically exact expression. For parameterized family $A_\epsilon = A +\epsilon R = U_\epsilon \Lambda_\epsilon U^T_\epsilon $, $\epsilon >0$ with distinct singular values, the unitary matrices $U_\epsilon $ are discontinuous at the point $\epsilon = 0$, if the singular values of $A$ are multiple, but the composition $U_\epsilon \Lambda_\epsilon U^T_\epsilon $ remains numerically stable and converges to $A$. The factorization is represented as a fast and compact algorithm. Its demo version for Wolfram Mathematica and interactive numerical tests are available on Internet.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Event logs collected by modern information and technical systems usually contain enough data for automated process models discovery. A variety of algorithms was developed for process models discovery, conformance checking, log to model alignment, comparison of process models, etc., nevertheless a quick analysis of ad-hoc selected parts of a journal still have not get a full-fledged implementation. This paper describes an ROLAP-based method of multidimensional event logs storage for process mining. The result of the analysis of the journal is visualized as directed graph representing the union of all possible event sequences, ranked by their occurrence probability. Our implementation allows the analyst to discover process models for sublogs defined by ad-hoc selection of criteria and value of occurrence probability

The geographic information system (GIS) is based on the first and only Russian Imperial Census of 1897 and the First All-Union Census of the Soviet Union of 1926. The GIS features vector data (shapefiles) of allprovinces of the two states. For the 1897 census, there is information about linguistic, religious, and social estate groups. The part based on the 1926 census features nationality. Both shapefiles include information on gender, rural and urban population. The GIS allows for producing any necessary maps for individual studies of the period which require the administrative boundaries and demographic information.

It is well-known that the class of sets that can be computed by polynomial size circuits is equal to the class of sets that are polynomial time reducible to a sparse set. It is widely believed, but unfortunately up to now unproven, that there are sets in EXPNP, or even in EXP that are not computable by polynomial size circuits and hence are not reducible to a sparse set. In this paper we study this question in a more restricted setting: what is the computational complexity of sparse sets that are *selfreducible*? It follows from earlier work of Lozano and Torán (in: Mathematical systems theory, 1991) that EXPNP does not have sparse selfreducible hard sets. We define a natural version of selfreduction, tree-selfreducibility, and show that NEXP does not have sparse tree-selfreducible hard sets. We also construct an oracle relative to which all of EXP is reducible to a sparse tree-selfreducible set. These lower bounds are corollaries of more general results about the computational complexity of sparse sets that are selfreducible, and can be interpreted as super-polynomial circuit lower bounds for NEXP.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.