Article
Adaptive Video Image Recognition System Using a Committee Machine
An ensemble of classifiers has been built to solve the problem of video image recognition. The paper offers a way to estimate the a posteriori probability of an image belonging to a particular class in the case of an arbitrary distance and nearest neighbor method. The estimation is shown to be equivalent to the optimal naive Bayesian estimate given Kullback-Leibler divergence being used as proximity measure. The block diagram of a video image recognition system is presented. The system features automatic adaptation of the list of images of identical objects which is fed to the committee machine input. The system is tested in face recognition task using popular data bases (FERET, AT&T, Yale) and the results are discussed.
The problem of the choice of algorithms parameters in automatic image recognition is put and solved by ensemble classifiers construction using the maximum posterior probability principle. The new criterion of parameters choice is strictly synthesized for Kullback-Leibler information discrimination and modern SIFT (Scale-Invariant Feature Transform) method of object recognition. The program and results of experimental research in a problem of face recognition with widely used databases (Yale, AT&T) are presented. It is shown that the proposed criterion allows to achieve recognition accuracy equal to the algorithm with the best parameters set, and not only for Kullback-Leibler information discrimination, but also for other popular distances (Euclidean metric, Kullback information divergence).
On the informatics and the software sides the questions of practical security are linked to the unstructured information processing algorithms applicable for the video array frames obtained by cross platform registration systems. Compression solutions become crucially important when the temporal evolution of the video stream exceeds the traffic capacity of the communication network. The basic image processing approach we exploited is to maintain of the highest resolution degree for the main part of the object we survey (for example, a man’s face or figure) whilst minimizing the information traffic from the image background by its artificial substitution with a homogeneous color filling. This method allowed us to obtain a significant compression rate (up to 7000).
The problem of the choice of algorithms parameters in automatic image recognition is put and solved by ensemble classifiers construction using the maximum posterior probability principle. The new criterion of parameters choice is strictly synthesized for Kullback-Leibler information discrimination and modern SIFT (Scale-Invariant Feature Transform) method of object recognition. The program and results of experimental research in a problem of face recognition with widely used databases (Yale, AT&T) are presented. It is shown that the proposed criterion allows to achieve recognition accuracy equal to the algorithm with the best parameters set, and not only for Kullback-Leibler information discrimination, but also for other popular distances (Euclidean metric, Kullback information divergence).
The definition of a phoneme as a fuzzy set of minimal speech units from the model database is proposed. On the basis of this definition and the Kullback-Leibler minimum information discrimination principle the novel phoneme recognition algorithm has been developed as an enhancement of the phonetic decoding method. The experimental results in the problems of isolated vowels recognition and word recognition in Russian are presented. It is shown that the proposed method is characterized by the increase of recognition accuracy and reliability in comparison with the phonetic decoding method
The problem of automatic detection of the moving forklift truck in video data is explored. This task is formulated in terms of computer vision approach as a moving object detection in noisy environment. It is shown that the state-of-the-art local descriptors (SURF, SIFT, FAST, ORB) are not characterized with satisfactory detection quality if the camera resolution is low, the lighting is changed dramatically and shadows are observed. In this paper we propose to use a simple mathematical morphological algorithm to detect the presence of a cargo on the forklift truck. Its first step is the estimation of the movement direction and the front part of the truck by using the updating motion history image. The second step is the application of Canny contour detection and binary morphological operations in front of the moving object to estimate simple geometric features of empty forklift. The algorithm is implemented with the OpenCV library. Our experimental study shows that the best results are achieved if the difference of the width of bounding rectangles is used as a feature. Namely, the detection accuracy is 78.7% (compare with 40% achieved by the best local descriptor), while the average frame processing time is only 5 ms (compare with 35 ms for the fastest descriptor).
A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traffic is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the final node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a finite-dimensional system of differential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of differential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.
Event logs collected by modern information and technical systems usually contain enough data for automated process models discovery. A variety of algorithms was developed for process models discovery, conformance checking, log to model alignment, comparison of process models, etc., nevertheless a quick analysis of ad-hoc selected parts of a journal still have not get a full-fledged implementation. This paper describes an ROLAP-based method of multidimensional event logs storage for process mining. The result of the analysis of the journal is visualized as directed graph representing the union of all possible event sequences, ranked by their occurrence probability. Our implementation allows the analyst to discover process models for sublogs defined by ad-hoc selection of criteria and value of occurrence probability
The geographic information system (GIS) is based on the first and only Russian Imperial Census of 1897 and the First All-Union Census of the Soviet Union of 1926. The GIS features vector data (shapefiles) of allprovinces of the two states. For the 1897 census, there is information about linguistic, religious, and social estate groups. The part based on the 1926 census features nationality. Both shapefiles include information on gender, rural and urban population. The GIS allows for producing any necessary maps for individual studies of the period which require the administrative boundaries and demographic information.
Existing approaches suggest that IT strategy should be a reflection of business strategy. However, actually organisations do not often follow business strategy even if it is formally declared. In these conditions, IT strategy can be viewed not as a plan, but as an organisational shared view on the role of information systems. This approach generally reflects only a top-down perspective of IT strategy. So, it can be supplemented by a strategic behaviour pattern (i.e., more or less standard response to a changes that is formed as result of previous experience) to implement bottom-up approach. Two components that can help to establish effective reaction regarding new initiatives in IT are proposed here: model of IT-related decision making, and efficiency measurement metric to estimate maturity of business processes and appropriate IT. Usage of proposed tools is demonstrated in practical cases.