Article
Robust optimization of graph partitioning involving interval uncertainty
The graph partitioning problem is to partition the vertex set of a graph into a number of nonempty subsets so that the total weight of edges connecting distinct subsets is minimized. Previous research requires the input of cardinalities of subsets or the number of subsets for equipartition. In this paper, the problem is formulated as a zero-one quadratic programming problem without the input of cardinalities. We also present three equivalent zero-one linear integer programming reformulations. Because of its importance in data biclustering, the bipartite graph partitioning is also studied. Several new methods to determine the number of subsets and the cardinalities are presented for practical applications. In addition, hierarchy partitioning and partitioning of bipartite graphs without reordering one vertex set, are studied.
The main aim of the book is, naturally, to give students the fundamental notions and instruments in linear algebra. Linearity is the main assumption used in all fieldsof science. It gives a first approximation to any problem under study and is widely used in economics and other social sciences. One may wonder why we decided to write a book in linear algebra despite the fact that there are many excellent books such as [10, 11, 19, 27, 34]? Our reasons can be summarized as follows. First, we try to fit the course to the needs of the students in economics and the students in mathematics and informatics who would like to get more knowledge in economics. Second, we constructed all expositions in the book in such a way to help economics students to learn mathematics and the proof making in mathematics in a convenient and simple manner. Third, since the hours given to this course in economics departments are rather limited, we propose a slightly different way of teaching this course. Namely, we do not try to give all proofs of all theorems presented in the course. Those theorems which are not proved are illustrated via figures and examples, and we illustrated all notions appealing to geometric intuition. Those theorems which are proved are proved in a most accurate way as it is done for the students in mathematics. The main notions are always supported with economic examples. The book provides many exercises referring to pure mathematics and economics. The book consists of eleven chapters and five appendices. Chapter 1 contains the introduction to the course and basic concepts of vector and scalar. Chapter 2 introduces the notions of vectors and matrices, and discusses some core economic examples used throughout the book. Here we begin with the notion of scalar product of two vectors, define matrices and their ranks, consider elementary operations over matrices. Chapter 3 deals with special important matrices – square matrices and their determinants. Chapter 4 introduces inverse matrices. In Chap. 5 we analyze the systems of linear equations, give methods how to solve these systems. Chapter ends with the discussion of homogeneous equations. Chapter 6 discusses more general type of algebraic objects – linear spaces. Here the notion of linear independence of vectors is introduced, which is very important from economic point of view for it defines how diverse is the obtained information. We consider here the isomorphism of linear spaces and the notion of subspace. Chapter 7 deals with important case of linear spaces – the Euclidean ones. We consider the notion of orthogonal bases and use it to construct the idea of projection and, particularly, the least square method widely used in social sciences. In Chapter 8 we consider linear transformations, and all related notions such as an image and kernel of transformation. We also consider linear transformations with respect to different bases. Chapter 9 discusses eigenvalues and eigenvectors. Here we consider self-adjoint transformations, orthogonal transformations, quadratic forms and their geometric representation. Chapter 10 applies the concepts developed before to the linear production model in economics. To this end we use, particularly, Perron–Frobenius Theorem. Chapter 11 deals with the notion of convexity, and so-called separation theorems. We use this instrument to analyse the linear programming problem. We observe during the years of our teaching experience that induction argument creates some difficulties among students. So, we explain this argument in Appendix A. In Appendix B we discuss how to evaluate the determinants. In Appendix C we give a brief introduction to complex numbers, which are important for better understanding the eigenvalues of linear operators. In Appendix D we consider the notion of the pseudoinverse, or generalized inverse matrix, widely used in different economic applications. Each chapter endswith the number of problemswhich allowbetter understanding the issues considered. In Appendix E the answers and hints to solutions to the problems from previous chapters and appendices are given.
Graph partitioning is required for solving tasks on graphs that need to be distributed over disks or computers. This problem is well studied, but the majority of the results on this subject are not suitable for processing graphs with billions of nodes on commodity clusters, since they require shared memory or lowlatency messaging. One of the approaches suitable for cluster computing is the balanced label propagation, which is based on the label propagation algorithm. In this work, we show how multi-level optimization can be used to improve quality of the partitioning obtained by means of the balanced label propagation algorithm.
A game with a finite (more than three) number of players on a polyhedron of connected player strategies is studied. This game describes the interaction among (a) the base load power plant (the generator), (b) all the large customers of a regional electrical grid that receive electric energy from the generator, as well as from the available renewable sources of energy, both directly and via electricity storing facilities, and (c) the transmission company. An auxiliary three-person game on polyhedra of disjoint player strategies that is associated with the initial game is also considered. It is shown that an equilibrium point in the auxiliary game is an equilibrium point in the above game with connected player strategies. Verifiable necessary and sufficient conditions of an equilibrium in the auxiliary three-person game are proposed, and these conditions allow one to find equilibria in (the auxiliary) solvable game by solving three linear programming problems two of which form a dual pair.
The paper proposes two new approaches to designing efficient mathematical tools for quantitatively analyzing decision-making processes that small and medium price-taking traders undergo in forming and managing their portfolios of financial instruments traded in a stock exchange. Two mathematical models underlying these approaches are considered. If the trader can treat price changes for each financial instrument of her interest as those of a random variable with a known (for instance, a uniform) probability distribution, one of these models allows the trader to formulate the problem of finding an optimal composition of her portfolio as an integer programming problem. The other model is suggested to use when the trader does not possess any particular information on the probability distribution of the above-mentioned random variable for financial instruments of her interest while being capable of estimating the areas to which the prices of groups of financial instruments (being components of finite-dimensional vectors for each group) are likely to belong. When each such area is a convex polyhedron described by a finite set of compatible linear equations and inequalities of a balance kind, the use of this model allows one to view the trader’s decision on her portfolio composition as that of a player in an antagonistic game on sets of disjoint player strategies. The payoff function of this game is a sum of a linear and a bilinear function of two vector arguments, and the trader’s guaranteed financial result in playing against the stock exchange equals the exact value of the maximin of this function. This value, along with the vectors at which it is attained, can be found by solving a mixed programming problem. Finding an upper bound for this maximin value (and the vectors at which this upper bound is attained) is reducible to finding saddle points in an auxiliary antagonistic game with the same payoff function on convex polyhedra of disjoint player strategies. These saddle points can be calculated by solving linear programming problems forming a dual pair.
Artifacts caused by intensely absorbing areas are encountered in computed tomography and may obscure or simulate pathology in medical applications, hide or mimic the cracks and cavities in the devices at industrial applications. We simulated sinograms with different levels of absorption to demonstrate the artifacts dynamics. If the analysis of the measured data shows the presence of strongly absorbing areas in the object under study we propose to use quadratic programming technique for solving the inverse problem. Although the technique is time-consuming it allows us to avoid the typical artifacts. We compare the images reconstructed with different techniques including the proposed one. ©ECMS Valeri M. Mladenov, Petia Georgieva, Grisha Spasov, Galidiya Petrova (Editors).
A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traffic is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the final node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a finite-dimensional system of differential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of differential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.
Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.
Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.