### Article

## Integrability properties of Hurwitz partition functions. II. Multiplication of cut-and-join operators and WDVV equations

Correlators in topological theories are given by the values of a linear form on the products of operators from a commutative associative algebra (CAA). As a corollary, partition functions of topological theory always satisfy the generalized WDVV equations of. We consider the Hurwitz partition functions, associated in this way with the CAA of cut-and-join operators. The ordinary Hurwitz numbers for a given number of sheets in the covering provide trivial (sums of exponentials) solutions to the WDVV equations, with finite number of time-variables. The generalized Hurwitz numbers from provide a non-trivial solution with infinite number of times. The simplest solution of this type is associated with a subring, generated by the dilatation operators ˆW1 = trD = trX@/@X.

We construct partition functions that are tau-functions of integrable hierarchies.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.

There is now a renewed interest to a Hurwitz tau-function, counting the isomorphism classes of Belyi pairs, arising in the study of equilateral triangulations and Grothiendicks’s dessins d’enfant. It is distinguished by belonging to a particular family of Hurwitz tau-functions, possessing conventional Toda/KP integrability properties. We explain how the variety of recent observations about this function fits into the general theory of matrix model tau-functions. All such quantities possess a number of different descriptions, related in a standard way: these include Toda/KP integrability, several kinds of W-representations (we describe four), two kinds of integral (multi-matrix model) descriptions (of Hermitian and Kontsevich types), Virasoro constraints, character expansion, embedding into generic set of Hurwitz τ -functions and relation to knot theory. When approached in this way, the family of models in the literature has a natural extension, and additional integrability with respect to associated new time-variables. Another member of this extended family is the Itsykson-Zuber integral.

This paper proposes an axiomatic form for cyclic foam topological field theories, that is topological field theories corresponding to string theories, where particles are arbitrary graphs. World surfaces in this case are 2-manifolds with one-dimensional singularities. I prove that cyclic foam topological field theories are in one-to-one correspondence with graph-Cardy-Frobenius algebras. Examples of cyclic foam topological field theories and graph-Cardy-Frobenius algebras are constructed.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

A form for an unbiased estimate of the coefficient of determination of a linear regression model is obtained. It is calculated by using a sample from a multivariate normal distribution. This estimate is proposed as an alternative criterion for a choice of regression factors.