### ?

## Gelfand-Tsetlin algebras and cohomology rings of Laumon spaces

Selecta Mathematica, New Series. 2011. Vol. 17. No. 2. P. 337-361.

Laumon moduli spaces are certain smooth closures of the moduli spaces of maps from the projective line to the flag variety of *GL _{n}.* We calculate the equivariant cohomology rings of the Laumon moduli spaces in terms of Gelfand-Tsetlin subalgebra of

*U*(

*gl*), and formulate a conjectural answer for the small quantum cohomology rings in terms of certain commutative shift of argument subalgebras of

_{n}*U*(

*gl*).

_{n}Research target:
Mathematics

Language:
English

Feigin B. L., Finkelberg M. V., Rybnikov L. G. et al., Selecta Mathematica, New Series 2011 Vol. 17 No. 3 P. 573-607

Laumon moduli spaces are certain smooth closures of the moduli spaces of maps from the projective line to the flag variety of GLn. We construct the action of the Yangian of sln in the cohomology of Laumon spaces by certain natural correspondences. We construct the action of the affine Yangian (two-parametric deformation of the universal ...

Added: October 9, 2012

Feigin E., Selecta Mathematica, New Series 2012 Vol. 18 No. 3 P. 513-537

Let Fλ be a generalized flag variety of a simple Lie group G embedded into the projectivization of an irreducible G-module Vλ. We define a flat degeneration Fλa, which is a GaM variety. Moreover, there exists a larger group Ga acting on Fλa, which is a degeneration of the group G. The group Ga contains ...

Added: August 31, 2012

Kaledin D., Moscow Mathematical Journal 2012 Vol. 12 No. 3 P. 593-604

We give a direct interpretation of the Witt vector product in terms of tame residue in algebraic K-theory. ...

Added: October 25, 2012

Galkin S., Mellit A., Smirnov M., Dubrovin's conjecture for IG(2,6) / Cornell University. Series math "arxiv.org". 2014. No. 1405.3857.

We show that the big quantum cohomology of the symplectic isotropic Grassmanian IG(2,6) is generically semisimple, whereas its small quantum cohomology is known to be non-semisimple. This gives yet another case where Dubrovin's conjecture holds and stresses the need to consider the big quantum cohomology in its formulation. ...

Added: May 16, 2014

Galkin S., Degenerations, transitions and quantum cohomology / Cornell University. Series math "arxiv.org". 2018. No. 1809.02737.

Given a singular variety I discuss the relations between quantum cohomology of its resolution and smoothing. In particular, I explain how toric degenerations helps with computing Gromov--Witten invariants, and the role of this story in Fanosearch programme. The challenge is to formulate enumerative symplectic geometry of complex 3-folds in a way suitable for extracting invariants ...

Added: September 25, 2018

Chari V., Loktev S., Journal of Algebra 2012 Vol. 349 No. 1 P. 317-328

We identify the sl(n+1) isotypical components of the global Weyl modules W(kω1) with certain natural subspaces of the polynomial ring in k variables. We then apply the representation theory of current algebras to classical problems in invariant theory. ...

Added: September 29, 2012

Gorinov A., Conical resolutions and the cohomology of the moduli spaces of nodal hypersurfaces / Cornell University. Series math "arxiv.org". 2014. No. 1402.5946.

We present a modification of the method of conical resolutions \cite{quintics,tom}. We apply our construction to compute the rational cohomology of the spaces of equations of nodal cubics in CP2, nodal quartics in CP2 and nodal cubics in CP3. In the last two cases we also compute the cohomology of the corresponding moduli spaces. ...

Added: February 26, 2014

Natanzon S. M., Pratoussevitch A., Russian Mathematical Surveys 2016 Vol. 71 No. 2 P. 382-384

In this paper, we present all higher spinor structures on Klein surfaces. We present also topological invariants that describe the connected components of moduli of Klein surfaces with higher spinor structure. Each connected component is represented as a cell factorable by a discrete group . ...

Added: March 25, 2016

Galkin S., Mellit A., Smirnov M., International Mathematics Research Notices 2015 Vol. 2015 No. 18 P. 8847-8859

We show that the big quantum cohomology of the symplectic isotropic Grassmanian IG(2,6) is generically semisimple, whereas its small quantum cohomology is known to be non-semisimple. This gives yet another case where Dubrovin's conjecture holds and stresses the need to consider the big quantum cohomology in its formulation. ...

Added: October 20, 2014

Feigin E., Cerulli Irelli G., Reineke M., Algebra & Number Theory 2012 Vol. 6 No. 1 P. 165-194

Quiver Grassmannians are varieties parametrizing subrepresentations of a quiver representation. It is observed that certain quiver Grassmannians for type A quivers are isomorphic to the degenerate flag varieties investigated earlier by the second named author. This leads to the consideration of a class of Grassmannians of subrepresentations of the direct sum of a projective and ...

Added: June 29, 2012

Galkin S., Iritani H., Gamma conjecture via mirror symmetry / Cornell University. Series math "arxiv.org". 2015. No. 1508.00719.

The asymptotic behaviour of solutions to the quantum differential equation of a Fano manifold F defines a characteristic class A_F of F, called the principal asymptotic class. Gamma conjecture of Vasily Golyshev and the present authors claims that the principal asymptotic class A_F equals the Gamma class G_F associated to Euler's Γ-function. We illustrate in ...

Added: August 5, 2015

Smirnov E., Perrin N., Bulletin de la Societe Mathematique de France 2012 Vol. 140 No. 3 P. 309-333

We study the singularities of the irreducible components of the Springer fiber over a nilpotent element N with N^2=0 in a Lie algebra of type A or D (the so-called two columns case). We use Frobenius splitting techniques to prove that these irreducible components are normal, Cohen-Macaulay, and have rational singularities. ...

Added: November 21, 2012

Coates T., Corti A., Galkin S. et al., Geometry and Topology 2016 Vol. 20 No. 1 P. 103-256

The quantum period of a variety X is a generating function for certain Gromov-Witten invariants of X which plays an important role in mirror symmetry. In this paper we compute the quantum periods of all 3-dimensional Fano manifolds. In particular we show that 3-dimensional Fano manifolds with very ample anticanonical bundle have mirrors given by ...

Added: November 18, 2014

Finkelberg M. V., Rybnikov L. G., Algebraic Geometry 2014 Vol. 1 No. 2 P. 166-180

Drinfeld zastava is a certain closure of the moduli space of maps from the projective line to the Kashiwara flag scheme of an affine Lie algebra g^. In case g is the symplectic Lie algebra spN, we introduce an affine, reduced, irreducible, normal quiver variety Z which maps to the zastava space isomorphically in characteristic 0. The natural Poisson structure on ...

Added: October 25, 2013

Felikson А. A., Natanzon S. M., Differential Geometry and its Application 2012 Vol. 30 No. 5 P. 490-508

We consider (local) parameterizations of Teichmüller space Tg,n (of genus g hyperbolic surfaces with n boundary components) by lengths of 6 g- 6 + 3 n geodesics. We find a large family of suitable sets of 6 g- 6 + 3. n geodesics, each set forming a special structure called "admissible double pants decomposition". For ...

Added: February 5, 2013

Braverman A., Michael Finkelberg, Negut A. et al., Switzerland : Springer, 2019

In the last 30 years a new pattern of interaction between mathematics and physics
emerged, in which the latter catalyzed the creation of new mathematical theories.
Most notable examples of this kind of interaction can be found in the theory of
moduli spaces. In algebraic geometry the theory of moduli spaces goes back at
least to Riemann, but they ...

Added: December 24, 2019

Galkin S., Golyshev V., Russian Mathematical Surveys 2006 Vol. 61 No. 1 P. 171-173

Added: September 14, 2013

Benett M., Berenstein A., Chari V. et al., Selecta Mathematica, New Series 2014 No. 2 P. 585-607

We study the category of graded representations with finite--dimensional graded pieces for the current algebra associated to a simple Lie algebra. This category has many similarities with the category O of modules for g and in this paper, we use the combinatorics of Macdonald polynomials to prove an analogue of the famous BGG duality in ...

Added: September 29, 2012

Galkin S., The conifold point / Cornell University. Series math "arxiv.org". 2014. No. 1404.7388.

Consider a Laurent polynomial with real positive coefficients such that the origin is strictly inside its Newton polytope. Then it is strongly convex as a function of real positive argument. So it has a distinguished Morse critical point --- the unique critical point with real positive coordinates. As a consequence we obtain a positive answer ...

Added: May 4, 2014

Galkin S., Golyshev V., Iritani H., Gamma classes and quantum cohomology of Fano manifolds: Gamma conjectures / Cornell University. Series math "arxiv.org". 2014. No. 1404.6407.

We propose Gamma Conjectures for Fano manifolds which can be thought of as a square root of the index theorem. Studying the exponential asymptotics of solutions to the quantum differential equation, we associate a principal asymptotic class A_F to a Fano manifold F. We say that F satisfies Gamma Conjecture I if A_F equals the ...

Added: May 4, 2014

Feigin B. L., Buryak A., Journal of Geometry and Physics 2012 Vol. 62 No. 7 P. 1652-1664

The moduli space M(r,n) of framed torsion free sheaves on the projective plane with rank r and second Chern class equal to n has the natural action of the (r+2)-dimensional torus. In this paper, we look at the fixed point set of different one-dimensional subtori in this torus. We prove that in the homogeneous case ...

Added: September 20, 2012

Prokhorov Y., Journal of Algebraic Geometry 2012 Vol. 21 No. 3 P. 563-600

We classify all finite simple subgroups of the Cremona group Cr3(C). ...

Added: September 19, 2012

Feigin M., Shramov K., International Mathematics Research Notes 2012 Vol. 2012 No. 15 P. 3375-3414

We consider representations of rational Cherednik algebras that are particular ideals in the ring of polynomials. We investigate convergence of the integrals that express the Gaussian inner product on these representations. We derive that the integrals converge for the minimal submodules in types B and D for the singular values suggested by Cherednik with at ...

Added: September 13, 2012

Cerulli Irelli G., Feigin E., Reineke M., Degenerate flag varieties: moment graphs and Schroeder numbers / Cornell University. Series math "arxiv.org". 2012. No. 1206.4178.

We study geometric and combinatorial properties of the degenerate flag varieties of type A. These varieties are acted upon by the automorphism group of a certain representation of a type A quiver, containing a maximal torus T. Using the group action, we describe the moment graphs, encoding the zero- and one-dimensional T-orbits. We also study ...

Added: June 29, 2012