### ?

## The weight function for the quantum affine algebra Uq(A_2^(2))

Journal of Geometry and Physics. 2010. Vol. 60. No. 11. P. 1833-1851.

Khoroshkin S. M., Shapiro A.

In this article, we give an explicit formula for the universal weight function of the quantum twisted affine algebra Uq(A(2)2 ). The calculations use the technique of projecting products of Drinfeld currents onto the intersection of Borel subalgebras of different types.

Levin A., Olshanetsky M., Zotov A., / Cornell University. Series math "arxiv.org". 2014.

e describe classical top-like integrable systems arising from the quantum
exchange relations and corresponding Sklyanin algebras. The Lax operator is
expressed in terms of the quantum non-dynamical $R$-matrix even at the
classical level, where the Planck constant plays the role of the relativistic
deformation parameter in the sense of Ruijsenaars and Schneider (RS). The
integrable systems (relativistic tops) are described ...

Added: January 23, 2015

A. Levin, Olshanetsky M., Zotov A., Journal of High Energy Physics 2014 Vol. 2014 No. 7:12 P. 1-39

We describe classical top-like integrable systems arising from the quantum exchange relations and corresponding Sklyanin algebras. The Lax operator is expressed in terms of the quantum non-dynamical R-matrix even at the classical level, where the Planck constant plays the role of the relativistic deformation parameter in the sense of Ruijsenaars and Schneider (RS). The integrable ...

Added: January 23, 2015

Covolo T., Ovsienko V., Poncin N., Journal of Geometry and Physics 2012 Vol. 62 P. 2294-2319

We define the notions of trace, determinant and, more generally, Berezinian of matrices over a (Z_2)^n graded commutative associative algebra. The applications include a new approach to the classical theory of matrices with coefficients in a Clifford algebra, in particular of quaternionic matrices. In a special case, we recover the classical Dieudonn\'e determinant of quaternionic ...

Added: September 28, 2015

A. Levin, Olshanetsky M., Zotov A., / Cornell University. Series math "arxiv.org". 2013.

We consider the isomonodromy problems for flat $G$-bundles over punctured
elliptic curves $\Sigma_\tau$ with regular singularities of connections at
marked points. The bundles are classified by their characteristic classes.
These classes are elements of the second cohomology group
$H^2(\Sigma_\tau,{\mathcal Z}(G))$, where ${\mathcal Z}(G)$ is the center of
$G$. For any complex simple Lie group $G$ and arbitrary class we define ...

Added: December 27, 2013

Levin A., Olshanetsky M., Zotov A., / Cornell University. Series math "arxiv.org". 2014.

In our recent paper we suggested a natural construction of the classical relativistic integrable tops in terms of the quantum R-matrices. Here we study the simplest case -- the 11-vertex R-matrix and related gl_2 rational models. The corresponding top is equivalent to the 2-body Ruijsenaars-Schneider (RS) or the 2-body Calogero-Moser (CM) model depending on its ...

Added: January 23, 2015

Khoroshkin A., Markaryan N. S., Shadrin S., / Cornell University. Series math "arxiv.org". 2012. No. 1206.3749.

We give an explicit formula for a quasi-isomorphism between the operads Hycomm (the homology of the moduli space of stable genus 0 curves) and BV/Δ (the homotopy quotient of Batalin-Vilkovisky operad by the BV-operator). In other words we derive an equivalence of Hycomm-algebras and BV-algebras enhanced with a homotopy that trivializes the BV-operator. These formulas ...

Added: August 29, 2012

A. Levin, Olshanetsky M., Zotov A., Nuclear Physics B 2014 Vol. 887 P. 400-422

In our recent paper we suggested a natural construction of the classical relativistic integrable tops in terms of the quantum R -matrices. Here we study the simplest case – the 11-vertex R -matrix and related gl2 rational models. The corresponding top is equivalent to the 2-body Ruijsenaars–Schneider (RS) or the 2-body Calogero–Moser (CM) model depending ...

Added: January 22, 2015

Aminov S., Arthamonov S., A. Levin et al., / Cornell University. Series math "arxiv.org". 2013.

We propose multidimensional versions of the Painleve VI equation and its degenerations. These field theories are related to the isomonodromy problems on flat holomorphic infinite rank bundles over elliptic curves and take the form of non-autonomous Hamiltonian equations. The modular parameter of curves plays the role of "time". Reduction of the field equations to the ...

Added: December 27, 2013

Levin A., Olshanetsky M., Zotov A., / Cornell University. Series math "arxiv.org". 2014.

We construct special rational ${\rm gl}_N$ Knizhnik-Zamolodchikov-Bernard
(KZB) equations with $\tilde N$ punctures by deformation of the corresponding
quantum ${\rm gl}_N$ rational $R$-matrix. They have two parameters. The limit
of the first one brings the model to the ordinary rational KZ equation. Another
one is $\tau$. At the level of classical mechanics the deformation parameter
$\tau$ allows to extend the ...

Added: January 23, 2015

Braverman A., Michael Finkelberg, Nakajima H., / Cornell University. Series math "arxiv.org". 2014.

We describe the (equivariant) intersection cohomology of certain moduli spaces ("framed Uhlenbeck spaces") together with some structures on them (such as e.g.\ the Poincar\'e pairing) in terms of representation theory of some vertex operator algebras ("W-algebras"). ...

Added: January 30, 2015

Providence : American Mathematical Society, 2014

Added: September 15, 2016

Grekov A., A. Zabrodin, A. Zotov, Nuclear Physics B 2019 Vol. 939 P. 174-190

We describe the correspondence of the Matsuo-Cherednik type between the quantum nn -body Ruijsenaars-Schneider model and the quantum Knizhnik-Zamolodchikov equations related to supergroup GL(N|M)GL(N|M) . The spectrum of the Ruijsenaars-Schneider Hamiltonians is shown to be independent of the {\mathbb Z}_2 -grading for a fixed value of N+M , so that N+M+1 different qKZ systems of ...

Added: May 24, 2019

Braverman A., Dobrovolska G., Michael Finkelberg, / Cornell University. Series math "arxiv.org". 2014.

Let G be an almost simple simply connected group over complex numbers. For a positive element α of the coroot lattice of G let Z^α denote the space of based maps from the projective line to the flag variety of G of degree α. This space is known to be isomorphic to the space of ...

Added: February 3, 2015

Shishov K., Логико-философские штудии 2018 Т. 16 № 1-2 С. 137-139

В работе [1] представляется алгебраическая структура QMV-алгебры, которая, опираясь на идеи и результаты [2], характеризуется в качестве обобщения для многозначных алгебр. В качестве множества-носителя этого класса структур выступает частично-упорядоченное множество всех эффектов, в действительном интервале [0,1], где под эффектом понима- ется ограниченный линейный оператор в гильбертовом пространстве. Используя метод, предложенный в [3], предполагается существование реляционной ...

Added: March 22, 2021

S.M. Khoroshkin, M. G. Matushko, Journal of Mathematical Physics 2019 Vol. 60 No. 7 P. 071706-1-071706-22

We present a construction of an integrable model as a projective type limit of Calogero-Sutherland models of N fermionic particles, when N tends to infinity. Explicit formulas for limits of Dunkl operators and of commuting Hamiltonians by means of vertex operators are given. ...

Added: September 19, 2019

Braverman A., Michael Finkelberg, / Cornell University. Series math "arxiv.org". 2014.

In this note, we extend the results of arxiv:1111.2266 and arxiv:1203.1583 to the non simply laced case. To this end we introduce and study the twisted zastava spaces. ...

Added: February 5, 2015

Cruz Morales J. A., Galkin S., / Cornell University. Series math "arxiv.org". 2013. No. 1301.4541.

In this note we provide a new, algebraic proof of the excessive Laurent phenomenon for mutations of potentials (in the sense of [Galkin S., Usnich A., Preprint IPMU 10-0100, 2010]) by introducing to this theory the analogue of the upper bounds from [Berenstein A., Fomin S., Zelevinsky A., Duke Math. J. 126 (2005), 1-52]. ...

Added: May 27, 2013

Gavrylenko P., Iorgov N., Lisovyy O., Journal of Physics A: Mathematical and Theoretical 2012 Vol. 45 No. 2 P. 025402

We study U(1) twist fields in a two-dimensional lattice theory of massive Dirac fermions. Factorized formulas for finite-lattice form factors of these fields are derived using elliptic parametrization of the spectral curve of the model, elliptic determinant identities and theta functional interpolation. We also investigate the thermodynamic and infinite-volume scaling limit, where the corresponding expressions ...

Added: October 20, 2014

Michael Finkelberg, Schechtman V., / Cornell University. Series math "arxiv.org". 2014.

We reformulate the De Concini -- Toledano Laredo conjecture about the monodromy of the Casimir connection in terms of a relation between the Lusztig's symmetries of quantum group modules and the monodromy in the vanishing cycles of factorizable sheaves. ...

Added: January 30, 2015

Marshall I., International Mathematics Research Notices 2015 Vol. 18 P. 8925-8958

A Poisson structure is defined on the space {\mathcal {W}} of twisted polygons in {\mathbb {R}}^{\nu }. Poisson reductions with respect to two Poisson group actions on {\mathcal {W}} are described. The \nu =2 and \nu =3 cases are discussed in detail. Amongst the Poisson structures arising in examples are to be found the lattice ...

Added: November 28, 2014

Marshakov A., Journal of Geometry and Physics 2012 Vol. 003 P. 16-36

We discuss the Poisson structures on Lie groups and propose an explicit construction of the integrable models on their appropriate Poisson submanifolds. The integrals of motion for the SL(N)-series are computed in cluster variables via the Lax map. This construction, when generalised to the co-extended loop groups, gives rise not only to alternative descriptions of relativistic Toda systems, but allows ...

Added: February 11, 2013

Khoroshkin A., Willwacher T., Živković M., / Cornell University. Series math "arxiv.org". 2014. No. 1411.2369.

We study the cohomology of complexes of ordinary (non-decorated) graphs, introduced by M. Kontsevich. We construct spectral sequences converging to zero whose first page contains the graph cohomology. In particular, these series may be used to show the existence of an infinite series of previously unknown and provably non-trivial cohomology classes, and put constraints on ...

Added: December 9, 2014

Brav C. I., Thomas H., Mathematische Annalen 2011 Vol. 351 No. 4 P. 1005-1017

We establish faithfulness of braid group actions generated by twists along an ADE configuration of 22-spherical objects in a derived category. Our major tool is the Garside structure on braid groups of type ADE. This faithfulness result provides the missing ingredient in Bridgeland's description of a space of stability conditions associated to a Kleinian singularity. ...

Added: September 29, 2014

Michael Finkelberg, Leonid Rybnikov, / Cornell University. Series math "arxiv.org". 2013.

Drinfeld zastava is a certain closure of the moduli space of maps from the projective line to the Kashiwara flag scheme of an affine Lie algebra g^. In case g is the symplectic Lie algebra spN, we introduce an affine, reduced, irreducible, normal quiver variety Z which maps to the zastava space isomorphically in characteristic ...

Added: December 27, 2013