### Article

## Спектр идеальной турбулентности

The system of equations for average velocity and Reynolds stresses are examined supposing the smallness of diffusive, relaxation and viscous processes. Such turbulent state is named ideal. It is shown that the spectrum of turbulence has the form of spectrum of absolutely black body.

Based on model calculations, we show that ion-acoustic oscillations can be excited by heat fluxes in a plasma. We discuss the probable effect of ion-acoustic oscillations on the formation of temperature gradients at critical heat fluxes. The local critical heat flux in the transition region of the solar atmosphere is close to the well-known experimental heat flux from the corona into the chromosphere.

We introduce a new asymptotic invariant of magnetic fields, namely, the quadratic (and polynomial) helicity. We construct a higher asymptotic invariant of a magnetic field. We also discuss various problems that can be solved by using the magnetic helicity invariant.

The generalized Wiedemann-Franz law for a nonisothermal quasi-neutral plasma with developedion-acoustic turbulence and Coulomb collisions has been proven. The results obtained are used to explain the anomalously low thermal conductivity in the chromosphere-corona transition region of the solar atmosphere. Model temperature distributions in the lower corona and the transition region that correspond to well-known experimental data have been determined. The results obtained are useful for explaining the abrupt change in turbulent-plasma temperature at distances smaller than the particle mean free path.

Within the framework of model calculations the possibility of occurrence of the ion-acoustic oscillation instability in a plasma without current and particle fluxes, but with an anisotropic distribution function, which corresponds to heat flux is shown. The model distribution function was selected taking into account the medium conditions. The increment of ion-acoustic oscillation is investigated as functional of the distribution function parameters. The threshold condition for the anisotropic part of the distribution function, under which the build-up of ion-acoustic oscillation with the wave vector opposite to the heat flux begins is studied. The critical heat flux, which corresponds to the threshold of ion-acoustic instability, is determined. For the solar conditions, the critical heat flux proved to be close to the heat flux from the corona into the chromosphere on the boundary of the transition region. The estimations show that outside of active regions and even in active regions with weaker magnetic fields ion-acoustic turbulence can be responsible for the formation of the sharp temperature jump. The generalized Wiedemann-Franz law for a non-isothermic quasi-neutral plasma with developed ion-acoustic turbulence is discussed. This law determines the relationship between electrical and thermal conductivities in a plasma with well-developed ion-acoustic turbulence. The anomalously low thermal conductivity responsible to the formation of high temperature gradients in the zone of the temperature jump is explained. The results are used to explain some properties of stellar atmosphere transition regions.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.