### ?

## Loop parametric scattering of cavity polaritons

Within the framework of the mean-field approximation, a coherently excited two-dimensional system of weakly repulsive bosons is predicted to show a giant loop scattering when the rotational symmetry is reduced. The considered process combines (i) the parametric decay of the driven condensate into different k states and (ii) their massive backscattering owing to spontaneous synchronization of several four-wave mixing channels. The hybridization of the direct and inverse scattering processes, which are different and thus do not balance each other, makes the condensate oscillate under constant one-mode excitation. In particular, the amplitude of a polariton condensate excited by a resonant electromagnetic wave in a uniform polygonal GaAs-based microcavity is expected to oscillate in the subterahertz frequency domain.