### Article

## Efficient solvability of the weighted vertex coloring problem for some two hereditary graph classes

The weighted vertex coloring problem for a given weighted graph is to minimize the number of colors so that for each vertex the number of the colors that are assigned to this vertex is equal to its weight and the assigned sets of vertices are disjoint for any adjacent vertices. For all but four hereditary classes that are defined by two connected 5-vertex induced prohibitions, the computational complexity is known of the weighted vertex coloring problem with unit weights. For four of the six pairwise intersections of these four classes, the solvability was proved earlier of the weighted vertex coloring problem in time polynomial in the sum of the vertex weights. Here we justify this fact for the remaining two intersections.

In this paper, we show that the weighted vertex coloring problem can be solved in polynomial on the sum of vertex weights time for {P_5, K_{2,3}, K_{2,3}^+}-free graphs. As a corollary, this fact implies polynomial-time solvability of the unweighted vertex coloring problem for {P_5, K_{2,3}, K_{2,3}^+}-free graphs. As usual, P_5 and K_{2,3} stands, respectively, for the simple path on 5 vertices and for the biclique with the parts of 2 and 3 vertices, K_{2,3} denotes the graph, obtained from a K_{2,3} by joining its degree 3 vertices with an edge.

This article is dedicated to an alternative method of solving of the Chinese Remainder Theorem for polynomials. To construct the solution, a system of linear equations is constructed (using the method of undetermined coefficients) and then solved. The complexity of the proposed method is also calculated.

This two-volume set (CCIS 905 and CCIS 906) constitutes the refereed proceedings of the Second International Conference on Advances in Computing and Data Sciences, ICACDS 2018, held in Dehradun, India, in April 2018. The 110 full papers were carefully reviewed and selected from 598 submissions. The papers are centered around topics like advanced computing, data sciences, distributed systems organizing principles, development frameworks and environments, software verification and validation, computational complexity and cryptography, machine learning theory, database theory, probabilistic representations.

We show that Branching-time temporal logics **CTL** and **CTL***, as well as Alternating-time temporal logics **ATL** and **ATL***, are as semantically expressive in the language with a single propositional variable as they are in the full language, i.e., with an unlimited supply of propositional variables. It follows that satisfiability for **CTL**, as well as for **ATL**, with a single variable is EXPTIME-complete, while satisfiability for **CTL***, as well as for **ATL***, with a single variable is 2EXPTIME-complete,—i.e., for these logics, the satisfiability for formulas with only one variable is as hard as satisfiability for arbitrary formulas.

We investigate the complexity of satisfiability for finite-variable fragments of propositional dynamic logics (PDLs). We consider three formalisms belonging to three representative complexity classes, broadly understood—regular PDL, which is EXPTIME-complete; PDL with intersection, which is 2EXPTIME-complete; and PDL with parallel composition, which is undecidable. We show that, for each of these logics, the complexity of satisfiability remains unchanged even if we only allow as inputs formulas built solely out of propositional constants, i.e. without propositional variables. Moreover, we show that this is a consequence of the richness of the expressive power of variable-free fragments: for all the logics we consider, such fragments are as semantically expressive as entire logics. We conjecture that this is representative of PDL-style, as well as closely related, logics.

Modal logics, both propositional and predicate, have been used in computer science since the late 1970s. One of the most important properties of modal logics of relevance to their applications in computer science is the complexity of their satisﬁability problem. The complexity of satisﬁability for modal logics is rather high: it ranges from NP-complete to undecidable for propositional logics and is undecidable for predicate logics. This has, for a long time, motivated research in drawing the borderline between tractable and intractable fragments of propositional modal logics as well as between decidable and undecidable fragments of predicate modal logics. In the present thesis, we investigate some very natural restrictions on the languages of propositional and predicate modal logics and show that placing those restrictions does not decrease complexity of satisﬁability. For propositional languages, we consider restricting the number of propositional variables allowed in the construction of formulas, while for predicate languages, we consider restricting the number of individual variables as well as the number and arity of predicate letters allowed in the construction of formulas. We develop original techniques, which build on and develop the techniques known from the literature, for proving that satisﬁability for a ﬁnite-variable fragment of a propositional modal logic is as computationally hard as satisﬁability for the logic in the full language and adapt those techniques to predicate modal logics and prove undecidability of fragments of such logics in the language with a ﬁnite number of unary predicate letters as well as restrictions on the number of individual variables. The thesis is based on four articles published or accepted for publication. They concern propositional dynamic logics, propositional branchingand alternating-time temporal logics, propositional logics of symmetric rela tions, and ﬁrst-order predicate modal and intuitionistic logics. In all cases, we identify the “minimal,” with regard to the criteria mentioned above, fragments whose satisﬁability is as computationally hard as satisﬁability for the entire logic.

We consider certain spaces of functions on the circle, which naturally appear in harmonic analysis, and superposition operators on these spaces. We study the following question: which functions have the property that each their superposition with a homeomorphism of the circle belongs to a given space? We also study the multidimensional case.

We consider the spaces of functions on the m-dimensional torus, whose Fourier transform is p -summable. We obtain estimates for the norms of the exponential functions deformed by a C1 -smooth phase. The results generalize to the multidimensional case the one-dimensional results obtained by the author earlier in “Quantitative estimates in the Beurling—Helson theorem”, Sbornik: Mathematics, 201:12 (2010), 1811 – 1836.

We consider the spaces of function on the circle whose Fourier transform is p-summable. We obtain estimates for the norms of exponential functions deformed by a C1 -smooth phase.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.