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Abstract—The weighted vertex coloring problem for a given weighted graph is to minimize the
number of colors so that for each vertex the number of the colors that are assigned to this vertex is
equal to its weight and the assigned sets of vertices are disjoint for any adjacent vertices. For all
but four hereditary classes that are defined by two connected 5-vertex induced prohibitions, the
computational complexity is known of the weighted vertex coloring problem with unit weights.
For four of the six pairwise intersections of these four classes, the solvability was proved earlier of
the weighted vertex coloring problem in time polynomial in the sum of the vertex weights. Here we
justify this fact for the remaining two intersections.
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INTRODUCTION

We consider only simple graphs, i.e., the undirected unlabeled graphs without loops and multiple
edges. A set of graphs closed under isomorphism and vertex removal is called a hereditary graph class.
Every hereditary graph class X can be defined by the set of forbidden induced subgraphs Y , and this is
written as follows: X = Free(Y). The graphs of the class X are also called Y-free. If Y = {H} then the
graphs in X will be called H-free.

Let G = (V,E) be a graph and let w : V → N ∪ {0} be a weight function. The pair (G,w) is called
a weighted graph. A vertex coloring of some (G,w) is an arbitrary mapping c : V → 2N for which
|c(v)| = w(v) for every vertex v ∈ V and c(u) ∩ c(v) = ∅ for every edge uv ∈ E. Elements of the set⋃

v∈V {c(v)} are called colors. It is assumed that the vertices of zero weight are not colored and hence
can be removed from G. The use of zero weights is justified by the fact that we propose some reduction
of weighted graphs that consists in removing some special vertices and reducing the weights of some
other vertices with the preservation of nonnegativity of their weights. This makes it possible to control
the weighted chromatic number.

The least number of colors in the vertex colorings of (G,w) is called the weighted chromatic
number of (G,w) and denoted by χw(G). The weighted vertex coloring problem (further, briefly,
Problem WVC) for a given weighted graph (G,w) and a number k consists in determining whether
χw(G) ≤ k or not. The nonweighted version of Problem WVC (i.e., the version with unit vertex weights)
is called the vertex coloring problem (Problem VC). Problems VC and WVC are classical NP-
complete problems on graphs [1].

As usual, Pn, Cn, and On denote a simple path, a simple cycle, and the empty graph on n vertices; and
Kp,q is a complete bipartite graph with p vertices in one part and q vertices in the other. Designate as K+

2,3

the graph obtained by adding to K2,3 an edge incident to vertices of degree 3 in K2,3. The graph W4 is
obtained from a cycle with 4 vertices by adding a new vertex and all edges incident to the added vertex
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98 RAZVENSKAYA, MALYSHEV

and the vertices of the cycle. A graph butterfly is the result of identifying some two vertices belonging
to two triangles.

Problem VC is polynomially solvable for the class Free({H}) if H is an induced subgraph in P4 or
in the graph P3 + P1 (i.e, in the disjoint union in the graphs P3 and P1); otherwise, Problem VC is NP-
complete in this class [2]. However, no complete complexity classification of Problem VC exists even
in the case of a pair of forbidden induced subgraphs. Moreover, for all hereditary classes but three defined
by prohibitions with at most 4 vertices each the computational status of Problem VC is known [3]. Some
recent results on the complexity of Problem VC in hereditary classes defined by prohibitions of small size
are presented in [4–15].

In [9–14], the question was considered of the computational complexity of Problem VC for two
connected 5-vertex forbidden induced subgraphs. At present, the complexity status of Problem VC is
known for all sets of prohibitions of this kind but the following four:

• {K1,3, butterfly},

• {P5,H}, where H ∈ {K2,3,K
+
2,3,W4}.

The complexity status of Problem VC has not been clarified for each of these four classes. In [11],
we proved that Problem VC is polynomially solvable for the class of {P5,K1,3}-free graphs. Conse-
quently, the intersection of the class Free({K1,3, butterfly}) with each of the remaining three classes
under consideration gives an example of the polynomial solvability of Problem VC. It is not hard to verify
that this remains valid for Problem WVC and polynomial solvability with respect to the sum of the vertex
weights; this fact is proved in the present article. In [15], we considered the class Free({P5,K2,3,W4})
and proved the solvability of Problem WVC in time polynomial of the sum of the vertex weights. In the
present article, we consider the classes Free({P5,K2,3,K

+
2,3}) and Free({P5,K

+
2,3,W4}) and prove the

polynomial-time solvability of Problem WVC for their graphs. These results imply that Problem VC is
polynomially solvable in each of the above-mentioned three classes. This makes sure that Problem VC
is polynomially solvable for each of the classes

Free({P5,K2,3}), Free({P5,K
+
2,3}), Free({P5,W4}).

The authors hope that their result will be useful in constructing polynomial algorithms for solving
Problem VC in these classes.

1. NOTATIONS

Let v be a vertex in a graph. For every k ≥ 0 let Nk(v) be the set of vertices in a graph situated
at distance exactly k from v. Clearly, N0(v) = {v} and N1(v) = N(v) is the neighborhood of v.
For vertices v1, . . . , vk in some graph and some subset V ′ of its vertex set, we adopt the notations

N∩
V ′(v1, v2, . . . , vk) = N(v1) ∩ N(v2) ∩ · · · ∩ N(vk) ∩ V ′,

N∪
V ′(v1, v2, . . . , vk) = (N(v1) ∪ N(v2) ∪ · · · ∪ N(vk)) ∩ V ′,

N−
V ′(v1, v2) = (N(v1) \ N(v2)) ∩ V ′.

If k = 1 then we write NV ′(v1) instead of N∩
V ′(v1) = N∪

V ′(v1), and N−
V ′(v1) means the set V ′ \ N(v1). If

V ′ coincides with vertex set of the graph then we write N−(v1, v2) instead of N−
V ′(v1, v2).

Let G be a graph and let A ⊆ V (G) and B ⊆ V (G). The symbol G designates the complementary
graph to G. Then G(A) is a subgraph in G induced by a set of vertices A, and G \ A is the result
of removing all elements of A from G. A subset A is completely adjacent to a subset B if each vertex
in A is adjacent to each vertex in B. A subset A is completely nonadjacent to a subset B if no vertex
in A is adjacent to no vertex in B. We assume that the empty set of vertices is both completely adjacent
and completely nonadjacent to any set of vertices.

An independent subset in a graph is a subset of its pairwise nonadjacent vertices. Each subset of
pairwise adjacent vertices in a graph is a clique.
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2. SOME ALGORITHMIC PROVISIONS FOR EFFICIENT ALGORITHMS
FOR SOLVING PROBLEM WVC

Let G = (V,E) be a graph. A subset M ⊆ V is called a module of G if each vertex in V \M is either
adjacent to all elements of M or to none of them. A module of the graph is called trivial if it contains
only one vertex of the graph or all its vertices; otherwise, it is called nontrivial. A separating clique
of a graph is its clique whose removal increases the number of its connected components. A connected
graph is called atomic if it contains neither nontrivial modules no separating cliques. The following result
is rather well known (for example, see Lemma 1 in [15]):

Lemma 1. For every hereditary graph class, Problem WVC is reduced to the same problem
for its atomic graphs in polynomial time.

Given v ∈ V , refer to V \ N(v) as the antineighborhood of v and denote it by N(v).

Lemma 2. Let (G,w) be a weighted graph containing a vertex v such that N(v) = {v, v1, . . . , vk}
is an independent set. Then

χw(G) = χw′(G \ {v}) + w(v),

where w′(u) = w(u) for each vertex u 	∈ N(v) and w′(u) = max(w(u) − w(v), 0) for each vertex
u 	= v belonging to N(v).

Proof. Since N(v) is independent, each color used for v can also be used for every vertex in N(v) \ {v}
with the preservation of the admissibility of the coloring and the total number of colors used therein.
Thus, it suffices to consider the colorings of (G,w) in which, for every vertex u ∈ N(v), some of the
min(w(v), w(u)) colors for u coincide with some of the min(w(v), w(u)) colors for v. Removing v

from G and decreasing w(u) by min(w(v), w(u)) for each u ∈ N(v) \ {v}, we obtain a weighted graph
(G \ {v}, w′) that can be colored with χw(G) − w(v) colors. Therefore,

χw(G) ≥ χw′(G \ {v}) + w(v).

On the other hand, each coloring of (G \ {v}, w′) can be complemented to a coloring of (G,w)
by using new w(v) colors for coloring the vertex v and adding any new w(u) − w′(u) colors for coloring
each vertex u ∈ N(v) \ {v}. Consequently,

χw(G) ≤ χw′(G \ {v}) + w(v).

Lemma 2 is proved.

Call an atomic graph irreducible if the antineighborhood of each its vertex is not an independent set.
Lemmas 1 and 2 imply the following

Lemma 3. For every hereditary graph class, Problem WVC is reduced to the same problem
for its irreducible graphs in polynomial time.

Some exhaustion analog of Lemma 2 for the case when N(v) \ {v} is a clique is presented in the
following obvious assertion:

Lemma 4. Let (G,w) be a weighted graph containing a vertex v such that

N(v) \ {v} = {v1, . . . , vk}
is a clique. Let Ω be the family of arrangements of weights w′ to the vertices of G \ {v} such that

• w′(u) = w(u) for each vertex u 	∈ N(v),
• for some nonnegative integers w1, w2, . . . , wk whose sum is equal to w(v), we have w′(vi) =

max(w(vi) − wi, 0) for each 1 ≤ i ≤ k.
Then

χw(G) = min
w′∈Ω

χw′(G \ {v}) + w(v).
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100 RAZVENSKAYA, MALYSHEV

Proof. Consider an arbitrary vertex coloring c of (G,w). Given 1 ≤ i ≤ k, denote by wi the number
of common colors for the vertices v and vi. We may assume that w1 + w2 + · · ·+ wk = w(v); otherwise,
the colors of

c(v) \
k⋃

i=1

c(vi)

can be used for coloring v1, v2, . . . , vk without loss of optimality for c. Remove v from G; then, for each
1 ≤ i ≤ k, replace the weight of vi by max(w(vi) − wi, 0) and obtain some element w∗ ∈ Ω. Clearly,

χw(G) = χw∗(G \ {v}) + w(v) ≥ min
w′∈Ω

χw′(G \ {v}) + w(v).

Now, consider an optimal vertex coloring of (G \ {v}, w∗∗), where

w∗∗ = arg min
w′∈Ω

χw′(G \ {v}),

and the corresponding nonnegative integers w1, w2, . . . , wk whose sum is equal to w(v). This coloring
gives a partial vertex coloring of (G,w). For each 1 ≤ i ≤ k, replace the vertex vi by w(vi) by using wi

new colors. We assume that for distinct vi and vj the sets of their new colors are disjoint. Use new w(v)
colors for coloring the vertex v. Thus,

χw(G) ≤ χw∗∗(G \ {v}) + w(v) = min
w′∈Ω

χw′(G \ {v}) + w(v).

Hence,

χw(G) = min
w′∈Ω

χw′(G \ {v}) + w(v).

Lemma 4 is proved.

The number of solutions to the equation w1 + w2 + · · ·+ wk = w(v) in nonnegative integers is equal
to

(
k

w(v)+k−1

)
. Therefore, Problem WVC for the pair (G,w) is reduced to

(
k

w(v)+k−1

)
Problems WVC,

each on the graph G \ {v}; moreover, passage to each of these problem is carried out in polynomial time.
Given a weighted graph (G′ = (V ′, E′), w′), where V ′ = {v′1, . . . , v′n}, define the operation of weight

unitizing. The result of this operation is a graph Gw′ with vertex set partitions into cliques Q1, . . . , Qn,
where |Qi| = w′

i for each 1 ≤ i ≤ n. For every i and j, the clique Qi is completely adjacent with Qj

(respectively, completely nonadjacent) if and only if v′iv
′
j ∈ E′ (respectively, v′iv

′
j 	∈ E′).

We say that the operation of weight unitizing preserves a graph class X if, for every graph G′ ∈ X
and weight function w′, we have Gw′ ∈ X . For example, it is not hard to check that the class X =
Free({P5,K1,3}) is preserved under weight unitizing. Obviously, we have

Lemma 5. For every graph class preserved under weight unitizing, Problem WVC is reduced
to Problem VC in time polynomial in the sum of the weights.

In [14, Lemma 11], we proved

Lemma 6. For every fixed C > 0, there exists C ′ > 0 such that Problem WVC for a graph
(G = (V,E), w) with |V | ≤ C is solvable in time

O
(( ∑

v∈V

w(v)
)C′)

.

In [15] (see Lemma 10 in [14]), we proved

Lemma 7. For every O3-free graph (G = (V,E), w), Problem WVC is solvable in time

O
(( ∑

v∈V

w(v)
)3)

.
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A graph is called a Berge graph if it belongs to the class

Free
(
{C2i+1 | i ≥ 1} ∪ {C2i+1 | i ≥ 1}

)
.

A graph is called perfect if its chromatic and clique numbers (i.e., the weighted chromatic number
for the unit collection of weights and the size of a greatest clique) are equal and this holds for each
of its induced subgraph. It was proved in [16] that a graph is perfect if and only if this is a Berge graph.

The following assertion is known (see [17]):

Lemma 8. Problem WVC is polynomially solvable for perfect graphs.

3. EFFICIENT SOLVABILITY OF PROBLEM WVC
FOR {P5,K2,3,K

+
2,3}-FREE GRAPHS

Describe the general scheme of our algorithm for {P5,K2,3,K
+
2,3}-free graphs. By Lemma 3, we can

consider only irreducible graphs of the class Free({P5,K2,3,K
+
2,3}).

In this section, we prove that each of these graphs G = (V,E) either has at most 10 vertices or has
at most four induced subgraphs each of which is isomorphic to K1,3. In the first case, we apply to (G,w)
some algorithm polynomial in the sum of the weights that exists by Lemma 6. In the case when |V | ≥ 11
and there is a vertex v with G(N(v)) 	∈ Free({O3}), we apply the elimination from Lemma 4 to v, which
turns out to be polynomial since N(v) \ {v} is a clique on at most three vertices. Therefore, Prob-
lem WVC for {P5,K2,3,K

+
2,3}-free graphs is reduced to the same problem for {P5,K1,3}-free graphs

in time polynomials in the sum of the weights. Problem WVC is solvable in polynomial time in the sum
of the weights of the vertices for {P5,K1,3}-free graphs because Problem VC is polynomially solvable
in Free({P5,K1,3}) (see [11]) and the operation of weight unitizing preserves the class Free({P5,K1,3}).

Let G = (V,E) be an irreducible {P5,K2,3,K
+
2,3}-free graph with a vertex v such that V ′ = N(v)

contains an independent set I = {a, b, c}. Redenote the set N2(v) by V ′′.

Lemma 9. N3(v) is empty.

Proof. Suppose to the contrary that there exists x ∈ N3(v) adjacent to a vertex y ∈ V ′′. Note that
I � N(y) since otherwise I, v, and y would induce K2,3.

Then N−
V ′(y) is completely adjacent to NV ′(y); otherwise, a vertex in N−

V ′(y) and a vertex in NV ′(y)
nonadjacent to it together with v, x, and y induce P5. Therefore, NI(y) 	= ∅; otherwise, I, v, and
an arbitrary vertex in NV ′(y) induce K+

2,3. It follows that I � N(y) and NI(y) 	= ∅; i.e., I cannot be
independent; a contradiction. Hence, N3(v) = ∅. Lemma 9 is proved.

Lemma 10. Given adjacent vertices x, y ∈ V ′′, we have either N∪
V ′(x, y) = V ′ or NV ′(x) =

NV ′(y).

Proof. Suppose the contrary. Redenote V ′ \ N∪
V ′(x, y) by N ′; while N−

V ′(x, y) ∪ N−
V ′(y, x), by N ′′; and

N∩
V ′(x, y), by N ′′′.

By assumption, N ′ 	= ∅ and N ′′ 	= ∅. Then N ′ is completely adjacent to N ′′ since otherwise x, y,
and v together with an element of N ′ and a nonadjacent element in N ′′ would induce P5. Owing to this
and the fact that I is an independent set and G ∈ Free({K2,3,K

+
2,3}), we have I � N(x), I � N(y) and

I � N ′, I � N ′′. Consequently, either I ∩ N ′ 	= ∅ or each of the sets N−
V ′(x, y), N−

V ′(y, x), and N ′′′

contains one element of I.
Suppose that I ∩ N ′ 	= ∅. We can assume that a ∈ I ∩ N ′ and u ∈ N−

V ′(x, y). Then, obviously,
ua ∈ E, b, c ∈ N ′′′, and u is adjacent at least to one of the vertices b or c. The vertex u cannot be
simultaneously adjacent to b and c since otherwise a, b, c, v, and u would induce K+

2,3; therefore, we
can assume that ub ∈ E and uc 	∈ E. Consequently, a, u, b, y, and c induce P5. Hence, I ∩ N ′ = ∅.
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Suppose that each of the sets N−
V ′(x, y), N−

V ′(y, x), and N ′′′ contains one element from I. We may
assume that

a ∈ N−
V ′(x, y), b ∈ N−

V ′(y, x), c ∈ N ′′′, w ∈ N ′.

Clearly, wa ∈ E and wb ∈ E. Since G ∈ Free({K+
2,3}), we have wc 	∈ E. Then b, w, a, x, and c induce P5;

a contradiction. Hence, the initial assumption fails.
Lemma 10 is proved.

Lemma 11. Given adjacent vertices x, y ∈ V ′′, we have N∪
V ′(x, y) = V ′.

Proof. Suppose the contrary. Then NV ′(x) = NV ′(y) and NV ′(x) ⊂ V ′ by Lemma 10. Denote by V ∗

the set of the vertices z ∈ V ′′ such that NV ′(z) = NV ′(x). Designate as V ∗∗ the set of the vertices of the
connected component of the subgraph G(V ∗) containing x and y. Prove that V ∗∗ is a nontrivial module
in G.

Assume that V ∗∗ is not a module in G. Then there exist adjacent vertices v1 ∈ V ∗∗ and v2 ∈ V ∗∗ and
a vertex v3 ∈ V ′′ \ V ∗∗ such that v1v3 	∈ E and v2v3 ∈ E. Clearly, v3 	∈ V ∗. Consequently, N∪

V ′(v2, v3) =
V ′ by Lemma 10. And so, there exists a vertex u ∈ V ′ adjacent to v3 and nonadjacent to v2. Then v1,
v2, v3, u, and v induce P5. Thus, V ∗∗ is a nontrivial module of G. Therefore, the initial assumption fails.
Lemma 11 is proved.

Lemma 12. If V ′ = I then |V | ≤ 10.

Proof. Since G is K2,3-free, none of the vertices of V ′′ is adjacent to all vertices in the set V ′ = I.
Suppose that z′ ∈ N∩(a, b) \ {v} and z′′ ∈ V ′′ \ N∩(a, b). If z′′c ∈ E then z′z′′ ∈ E since otherwise z′′,
c, v, and a or b and z′ would induce P5. If z′′c 	∈ E then z′′ must be adjacent to a or b but not to both
of them. Then z′z′′ 	∈ E since otherwise c, v, and a or b, z′, and z′′ would induce P5. Consequently,
N∩(a, b) \ {v} is a module in G; therefore, it contains at most one vertex. Likewise, each of the sets
N∩(a, c) \ {v} and N∩(b, c) \ {v} contains at most one vertex.

Suppose that N(z′) ∩ I = {a}, z′′ ∈ V ′′, and N(z′′) ∩ I 	= {a}. We showed above that if z′′ ∈
N∩(a, b) ∪ N∩(a, c) then z′z′′ 	∈ E. If z′′ is nonadjacent to a then z′z′′ ∈ E since otherwise z′, a, v,
and b or с and z′′ would induce P5. Consequently, N(a) \N∪(b, c) is a module in G and contains at most
one vertex. Analogously,

|N(b) \ N∪(a, c)| ≤ 1, |N(c) \ N∪(a, b)| ≤ 1.

Hence, |V | ≤ 10.
Lemma 12 is proved.

Henceforth we assume that v has a neighborhood of the greatest size among all vertices of G
containing three pairwise nonadjacent vertices and |V ′| ≥ 4.

Lemma 13. The set V ′′ is a clique with two or three vertices and the vertex of degree 3 of each
induced subgraph K1,3 in G belongs to the set V ′′ ∪ {v}.

Proof. Let x and y be arbitrary adjacent vertices in V ′′. Such vertices exist since N(v) must not be
an independent set.

Put

N1 = N−
V ′(x, y), N2 = N−

V ′(y, x), N3 = N∩
V ′(x, y).

By Lemma 11, N∪
V ′(x, y) = V ′. So, from the independence of I and the K2,3-freeness of G it follows that

I � N(x), I � N(y) and N1 	= ∅, N2 	= ∅. Since G ∈ Free({K2,3,K
+
2,3}), we have |N∩

V ′(x′, y′)| ≤ 1
for every nonadjacent vertices x′ ∈ V ′′ and y′ ∈ V ′′.

Show that there is no vertex in V ′′ adjacent to only one of the vertices x and y. Suppose that some
z ∈ V ′′ is adjacent to x and not adjacent to y. To avoid the appearance of a subgraph P5 induced by z, x,
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y, a vertex from N2, and v, it is necessary that {z} be completely adjacent to N2. Therefore, N2 contains
exactly one element a′ and {z} is completely nonadjacent to (N∩

V ′(y, x) \ {a′}). If {z} is not completely
adjacent to N1 then N(x) contains three pairwise nonadjacent vertices (y, z, and some element from N1);
moreover, |N(x)| > |V ′|. Clearly, I � N(z). Hence, since I � N(x) and I � N(y), we can assume that
a′ = a, b ∈ N3, and c ∈ N1. Consequently, G contains the graph P5 induced by c, z, a, y, and b. Therefore,
our assumption of the existence of a vertex z fails. Thus, G(V ′′) is a P3-free graph, i.e., a disjoint sum
of complete graphs.

Suppose now that z is a vertex from V ′′ adjacent neither to x nor to y. Consider the two cases:
N(z) ∩ (N1 ∪ N2) = ∅ and N(z) ∩ (N1 ∪ N2) 	= ∅.

Assume that N(z) ∩ (N1 ∪N2) = ∅. Then N(z) ∩N3 	= ∅. Clearly, |N(z) ∩N3| = 1. Since N(z) ∩
N3 is not a separating clique of G, there exists a vertex z′ ∈ V ′′ adjacent to z. By Lemma 11, N∪

V ′(z, z′) =
V ′. Consequently, N(z′) ∩ (N1 ∪ N2) 	= ∅. The vertex z′ is adjacent neither to x nor to y because
otherwise, x, y, z, and z′ would form a clique, which is impossible. Replacing z′ by z, we can consider
only the case when N(z) ∩ (N1 ∪ N2) 	= ∅.

Suppose that N(z) ∩ N2 	= ∅; for N(z) ∩ N1 	= ∅ the argument is similar. Clearly, |N∩
V ′(x, z)| ≤ 1

and |N∩
V ′(y, z)| ≤ 1; therefore, N(z) ∩ N2 = {a′}. We can assume that N(z) ∩ N1 = {b′} since other-

wise there must exist a vertex z′′ ∈ V ′′ adjacent to z because {a′} is not a separating clique. Then
N∪

V ′(z, z′′) = V ′ by Lemma 11; therefore, V ′ \ {a′} ⊆ N(z′′). Clearly, z′′x 	∈ E and z′′y 	∈ E. Since
|V ′| ≥ 4, either |N∩

V ′(z′′, x)| ≥ 2 or |N∩
V ′(z′′, y)| ≥ 2. Consequently, G contains either an induced K2,3

or an induced K+
2,3. Hence, we can assume that N(z) ∩ N1 = {b′}; therefore, N(z) ∩ N3 = ∅.

Since I � N(x) and I � N(y), we can assume by symmetry considerations that NI(x) = {b, c},
a ∈ N2 and c ∈ N1. The set {a′} is completely adjacent to NV ′(x) \ {b′} since otherwise the vertices z,
a′, v, some vertex in NV ′(x) \ {b′}, and also x would induce P5. Thus, a′b ∈ E or a′c ∈ E, and so a′ 	= a.
Let b ∈ N1. Then b′ ∈ {b, c}; otherwise, a′, x, y, b, and c would induce K2,3. We can assume that b′ = c.
Hence, z, c, x, y, and a induce P5. Suppose that b ∈ N3. If b′ = c then z, c, x, y, and a induce P5.
Let b′ 	= c. Then a′b ∈ E and a′c ∈ E. Then b′a ∈ E; otherwise, z, b′, x, y, and a would induce P5.
The vertices a′ and a must not be adjacent; otherwise, v, a′, a, b, and c would induce K+

2,3. The vertex b′

is adjacent at least to one of the vertices a′ and b since otherwise a, b′, z, a′, and b induce P5. If b′b ∈ E
then b′c 	∈ E; otherwise, v, b′, a, b, and c would induce K+

2,3. Then b′a′ ∈ E; otherwise, a, b′, b, a′, and c

would induce P5 and a′, b′, c, x, and y would induce K2,3. If b′a′ ∈ E and b′b 	∈ E then b′c since otherwise
x, v, b, b′, and c would induce K2,3. Then c, b′, a, y, and b induce P5.

Thus, every vertex in V ′′ \ {x, y} is adjacent both to x and y. Hence, since G(V ′′) is a disjoint union
of complete graphs, V ′′ is a clique. By Lemma 11, each of a, b, and c is adjacent at least to |V ′′| − 1
vertices in V ′′; therefore, if |V ′′| ≥ 4 then V ′′ has a vertex adjacent to a, b, and c simultaneously.
Therefore, in this case, G contains an induced subgraph K2,3. Thus, |V ′′| ≤ 3.

Suppose that some induced subgraph K1,3 in G is induced by vertices v′, v′1, v′2, and v′3, where v′ ∈ V ′

has degree 3 in K1,3. Then, obviously, {v′1, v′2, v′3} � V ′ since otherwise v, v′, v′1, v′2, and v′3 induce
a subgraph K+

2,3. Since V ′′ is a clique, V ′′ contains exactly one of the vertices v′1, v′2, and v′3. We can
assume that v′1 = x and then v′2, v

′
3 ∈ N2. In this case, v′, x, y, v′2, and v′3 induce either K2,3 (if v′ ∈ N1)

or K+
2,3 (if v′ ∈ N3); a contradiction.

Lemma 13 is proved.

Theorem 1. Problem WVC is solvable in time polynomial in the sum of the weights of the
vertices in the class of {P5,K2,3,K

+
2,3}-free graphs.

Proof. Problem VC is polynomially solvable for {P5,K1,3}-free graphs (see [11, Lemma 9]).
The operation of weight unitizing preserves the class Free({P5,K1,3}). Consequently, by Lemma 5,

Problem WVC is solvable in time polynomial in the sum of the weights in the class Free({P5,K1,3}).
Thus, we can consider only graphs in Free({P5,K2,3,K

+
2,3}) that contain an induced subgraph K1,3
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(note that the membership of a graph in Free({K1,3}) is obviously checked in polynomial time). By Lem-
mas 3 and 6, we can consider only such irreducible graphs with at least 11 vertices. Lemmas 12 and 13
guarantee that each of these graphs contains at most 4 vertices that can be vertices of degree 3
in their induced subgraphs K1,3. The antineighborhhods without the vertices themselves induce cliques
on at most three vertices. To each such vertex v, we can apply the elimination of Lemma 4, and this can
be done in time polynomial in the sum of the weights.

Thus, Problem WVC in the class Free({P5,K2,3,K
+
2,3}) is reduced to the same problem in the class

Free({P5,K1,3}) in time polynomial in the sum of the weights. Thus, the theorem holds.

Theorem 1 is proved.

4. EFFICIENT SOLVABILITY OF PROBLEM WVC
FOR {P5,K

+
2,3,W4}-FREE GRAPHS

Describe the general scheme of our algorithm for {P5,K
+
2,3,W4}-free graphs. By Lemma 1, it suffices

to consider only the atomic graphs from Free({P5,K
+
2,3,W4}). In this section, we prove that every such

graph is either O3-free or perfect or has at most 161 vertices. Consequently, by Lemmas 6–8, there
is an algorithm polynomial in the sum of the weights solving Problem WVC for {P5,K

+
2,3,W4}-free

graphs.

Let H be an atomic {P5,K
+
2,3,W4}-free graph that contains an induced subgraph C7. Since it is more

convenient to work with the complement to H , consider the graph G = H which contains an induced
subgraph C7.

Lemma 14. The graph G = (V,E) is isomorphic to a 7-cycle or contains an induced 5-cycle.

Proof. Suppose that G is C5-free. Since G ∈ Free({W 4}), each vertex in G is adjacent to some two
vertices in a cycle C7 = (v1, v2, v3, v4, v5, v6, v7). Below we take the vertices of this cycle modulo 7.

Let u 	∈ V (C7) and let {vi, vi+1 . . . , vi+k} be the greatest set of neighbors of u on the 7-cycle consist-
ing of consecutive vertices of the cycle. Let 1 ≤ k ≤ 5. Thus uvi−1 	∈ E and uvi+k+1 	∈ E; otherwise, we
arrive to a contradiction to the choice of the set. We have uvi−2 	∈ E and uvi+k+2 	∈ E; otherwise, vi−2,
vi−1, vi, vi+1, and u or vi+k+2, vi+k+1, vi+k, vi+k−1, and u would induce P 5. Therefore, k 	= 5. We have
uvi−3 	∈ E and uvi+k+3 	∈ E; otherwise, vi−3, vi−2, vi−1, vi, and u or vi+k+3, vi+k+2, vi+k+1, vi+k, and u
would induce C5. Therefore, k 	= 4. Consequently, k ∈ {1, 2, 3} and NV (C7)(u) = {vi, vi+1 . . . , vi+k}.

Thus, G is not K
+
2,3-free. Hence, either k = 7 or u cannot be adjacent to two consecutive vertices of the

7-cycle. Since G is C5-free, in the last case, NV (C7)(u) = {vi, vi+2} for some i.

Recall that the graph H does not contain nontrivial modules. Consequently, G does not contain
nontrivial modules too. Since G is P 5-free, each vertex adjacent to all vertices of the 7-cycle must be
adjacent to each of the vertices having exactly two neighbors on the 7-cycle.

Suppose that u 	∈ V (C7), NV (C7)(u) = {vi, vi+2}, and the set {u, vi+1} is not a module. Then there
exists a vertex u′ 	∈ V (C7), NV (C7)(u′) = {vj , vj+2}, for which uu′ ∈ E and vi+1u

′ 	∈ E or uu′ 	∈ E and
vi+1u

′ ∈ E. The second case is possible only for j = i± 1; but then u, vi, u′, vi+3, and vi+5 or u, vi−1, u′,
vi+2, and vi+4 induce a subgraph W 4. Consider the first case. Here j 	∈ {i − 1, i + 1} ∪ {i − 2, i + 2};
otherwise, the vertices u, u′, vi+2, vi+3, and vi+4 or u, u′, vi−2, vi−1, and vi would induce a subgraph P 5.
But j 	∈ {i − 3, i + 3}; otherwise, vi−3, u′, u, vi+2, and vi+3 or vi−1, vi, u, u′, and vi+5 would induce
a subgraph C5. Moreover, j 	= i; otherwise, the vertices u, u′, vi+1, vi+3, and vi+4 induce a subgraph W 4;
a contradiction.

Hence, there is no vertex not belonging to a 7-cycle and having exactly two neighbors on it. Thus,
V (C7) is a module. Hence, G is isomorphic to a 7-cycle.

Lemma 14 is proved.

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 15 No. 1 2021



EFFICIENT SOLVABILITY 105

Clearly, every {P5,W4, C5, C7}-free graph is perfect. Therefore, every {P5,K
+
2,3,W4}-free graph

not containing induced subgraphs C5 and C7 is perfect. Thus, by Lemmas 1 and 8, Problem WVC
is solvable for these graphs in polynomial time. Recalling Lemmas 6 and 14, it remains to consider
only {P5,K

+
2,3,W4}-free graphs containing an induced C5. This is in essence the main contents of this

section, where practically all the lemmas are aimed to finding the exact structure of the arising graphs.
There are rather many such lemmas, and they all are of technical nature.

Let G = (V,E) be an atomic {P5,K
+
2,3,W4}-free graph that contains an induced cycle C =

(v1, v2, v3, v4, v5). Henceforth, the indices of the vertices in the cycle are understood modulo 5. Introduce
the following notations for the graph G:

• Vi = {x 	∈ V (C) | NV (C)(x) = {vi, vi+2}},

• V ′
i = {y 	∈ V (C) | NV (C)(y) = {vi, vi+1, vi+2}},,

• V ′′
i = {z 	∈ V (C) | NV (C)(z) = {vi, vi+1, vi+2, vi+3}},

• V ′′′
i = {t 	∈ V (C) | NV (C)(t) = {vi, vi+2, vi+3}},

• V ′′′′ is the set of the vertices each of which is adjacent to all vertices in V (C),

• S = V \
(
V (C) ∪

5⋃

i=1
(Vi ∪ V ′

i ∪ V ′′
i ∪ V ′′′

i ) ∪ V ′′′′
)

,

• V̂ is the set of all vertices not belonging to C and, simultaneously, having neighbors both on C and
in S.

Clearly, every vertex not belonging to C and having a neighbor on C belongs to the set

5⋃

i=1

(
Vi ∪ V ′

i ∪ V ′′
i ∪ V ′′′

i

)
∪ V ′′′′.

Recalling that G is a {P5,K
+
2,3,W4}-free graph, it is not hard to verify the next

Lemma 15. The following hold:

(i) For each i, the sets V ′
i , V ′′

i , and V ′′′′ are cliques.

(ii) The set
5⋃

i=1
(Vi ∪ V ′

i ) is completely nonadjacent to S.

(iii) For each i, we have

(1) Vi is completely adjacent to Vi−1 ∪ Vi+1 ∪ V ′′′
i+1 and completely nonadjacent to

V ′
i ∪ V ′

i+2 ∪ V ′
i+3 ∪ V ′′

i−1 ∪ V ′′
i ∪ V ′′′′;

moreover, V ′
i−1 ∪ V ′

i+1 ∪ V ′′
i+1 ∪ V ′′

i+3 = ∅ if Vi 	= ∅;

(2) V ′
i is completely adjacent to

V ′
i−1 ∪ V ′

i+1 ∪ V ′′
i−1 ∪ V ′′

i ∪ V ′′′
i+1 ∪ V ′′′

i+3 ∪ V ′′′
i+4 ∪ V ′′′′

and completely nonadjacent to V ′′
i+2 ∪ V ′′′

i cupV ′′′
i+2; moreover, V ′′′

i+1 = ∅ if V ′
i 	= ∅;

(3) V ′′
i is completely adjacent to V ′′

i−1 ∪ V ′′
i+1 ∪ V ′′′′ and completely nonadjacent to

V ′′
i−2 ∪ V ′′

i+2 ∪ V ′′′
i ∪ V ′′′

i−2; moreover, V ′′′
i+1 ∪ V ′′′

i+2 ∪ V ′′′′ = ∅ if V ′′
i 	= ∅;

(4) V ′′′
i is completely adjacent to V ′′′

i−1 ∪ V ′′′
i+1 and completely nonadjacent to V ′′′′.

Lemma 16. Vi is independent for each i.
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Proof. Suppose that Vi is not independent. Denote by H∗ = (V ∗, E∗) an arbitrary connected compo-
nent of G(Vi) with at least two vertices. Lemma 15 (items (ii) and (iii), (1)) implies that the elements
of V ∗ can have neighbors only in the set

V ∗ ∪ {vi, vi+2} ∪ V ′′
i+2 ∪

5⋃

j=1, j �=i+1

V ′′′
i .

Since V ∗ is not a nontrivial module in G, there are adjacent vertices a, b ∈ V ∗ and c 	∈ Vi such that
ac 	∈ E and bc ∈ E. Clearly,

c ∈ V ′′
i+2 ∪

5⋃

j=1, j �=i+1

V ′′′
i .

If c ∈ V ′′
i+2 then vi, vi+2, a, b, and c induce W4.

If c ∈ V ′′′
i+3 ∪ V ′′′

i+4 then a, b, c, vi+3, and vi+4 induce P5.
If c ∈ V ′′′

i ∪ V ′′′
i+2 then vi, vi+2, a, b, and c induce W4; a contradiction.

Hence, Vi is an independent set. Lemma 16 is proved.

In the following four lemmas, we consider the situation when S = ∅ while proving that either
G ∈ Free({O3}) or G has few vertices:

Lemma 17. If
⋃5

i=1

(
Vi ∪ V ′′′

i

)
∪ S = ∅ then G is O3-free.

Proof. Suppose the contrary. Let {a, b, c} be an independent set of G. Clearly, |C ∩ {a, b, c}| ≤ 1.
If vi ∈ {a, b, c} (say, vi = a) then, by Lemma 15 (items (i), (iii), (2), and (iii), (3)), b and c are adjacent.

This also implies that V ′′′′ ∩ {a, b, c} = ∅; therefore, C ∩ {a, b, c} = ∅ and two elements of the set
{a, b, c} belong to one of the sets

⋃5
i=1 V ′

i and
⋃5

i=1 V ′′
i . Let these be the vertices a and b.

If a, b ∈
⋃5

i=1 V ′
i then, by Lemma 15 (items (i) and (iii), (2)), we assume that a ∈ V ′

i and b ∈ V ′
i+2.

This and items (i), (iii), (2), and (iii), (3) of Lemma 15 imply that c ∈ V ′′
i+3; therefore, a, vi+1, c, vi+3,

and b induce P5.
If a, b ∈

⋃5
i=1 V ′′

i then, by Lemma 15 (items (i) and (iii), (3)), we may assume that a ∈ V ′′
i and

b ∈ V ′′
i+2. By items (i), (iii), (2) and (iii), (3) of Lemma 15, c ∈ V ′

i+4. Then a, vi+1, c, vi+4, and b induce P5.
Hence, the initial assumption fails. Lemma 17 is proved.

Lemma 18. If S = ∅ and for some i vertices a ∈ V ′
i and b ∈ V ′

i+2 are adjacent then either
G ∈ Free({O3}) or |V | ≤ 17.

Proof. Owing to Lemma 15 (item iii, (2)) and the W4-freeness of G, we have V ′′′′ = ∅. Since G ∈
Free({K+

2,3}), by Lemma 15 (item iii, (2)), V ′′′
i is a clique.

By Lemma 15 (item iii, (1)),

Vi+1 = Vi+3 = Vi+4 = ∅.

At the same time, if there exists a vertex c ∈ Vi ∪ Vi+2 then c is adjacent neither to a nor to b
by Lemma 15 (item iii, (1)); but then either vi+3, b, a, vi, and c or vi+1, a, b, vi+4, and c induce P5.
Therefore, Vi = Vi+2 = ∅.

By Lemma 15 (item iii, (2)), V ′′′
i+1 = V ′′′

i+3 = ∅. Clearly, there is no vertex c ∈ V ′′′
i+2; otherwise, ac 	∈ E

and bc 	∈ E by Lemma 15 (iii, (2)), and the vertices c, vi, a, b, and vi+3 induce P5. By Lemma 15
(items (iii), (2) and (iii), (4)) and the W4-freeness of G, either V ′′′

i = ∅ or V ′′′
i+4 = ∅.

Symmetry considerations and Lemma 17 enable us to assume that V ′′′
i 	= ∅. Consequently, V ′′′

i+4 = ∅

and also V ′′
i+3 = V ′′

i+4 = ∅ by Lemma 15 (item iii, (3)). Since G ∈ Free({K+
2,3}) by Lemma 15 (item

iii, (2)), V ′′′
i is a clique. If there exists a vertex c ∈ V ′′

i then ac ∈ E and {c} is completely nonadjacent
to V ′′′

i by Lemma 15 (item iii, (2)). The vertices b and c must be adjacent; otherwise, a, b, c, vi+2, and vi+3
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would induce W4. Therefore, vi+3, vi+4, b, c, and an arbitrary vertex in V ′′′
i would induce K+

2,3. Hence,
V ′′

i = ∅. If there exists a vertex c ∈ V ′′
i+2 then ac 	∈ E, bc ∈ E, and {c} is completely nonadjacent to V ′′′

i

by items (iii), (2) and (iii), (3) of Lemma 15. Then vi+2, a, b, c, and an arbitrary vertex in V ′′′
i induce

some K+
2,3. Consequently, V ′′

i+2 = ∅.

Since G ∈ Free({K+
2,3}), by Lemma 15 (i), no vertex in V ′′′

i is adjacent to two vertices in V ′′
i+1. Con-

sequently, by Lemma 15 (item iii, (2)), for each vertex x ∈ V ′′
i+1 we have |NV ′′′

i
(x)| ≤ 1 since otherwise

NV ′′′
i

(x) is a nontrivial module. If there exist vertices x1, x2 ∈ V ′′
i+1 adjacent respectively to the vertices

y1, y2 ∈ V ′′′
i then x1y2, x2y1 	∈ E and vi+2, x1, x2, y1, and y2 induce W4. Hence, between V ′′′

i and V ′′
i+1,

there is at most one edge. Therefore, by Lemma 15 (item iii, (3)), |V ′′
i+1| ≤ 2; otherwise, G would contain

a nontrivial module.
Recall that V ′′

i+1 ∪ V ′′′
i is completely adjacent to V ′

i+2 by Lemma 15 (item iii, (2)). Thus, {a} is
completely adjacent to V ′′

i+1 since otherwise some of its vertices and a, b, vi+1, and vi+2 induce W4.
Therefore, V ′′

i+1 is completely nonadjacent to V ′′′
i since otherwise a, b, and vi+4 together with a pair

of adjacent vertices, one of which belongs to V ′′
i+1 and the other, to V ′′′

i , induce K+
2,3. There are no such

nonadjacent vertices c ∈ V ′′
i+1 and a′ ∈ V ′

i ; otherwise, a′ 	= a and {c} is completely adjacent to V ′′′
i

for avoiding the induction of P5 by a′, vi+1, c, vi−2, and a vertex in V ′′′
i ; a contradiction. No vertex

a′ ∈ V ′
i can be adjacent to vertices b′, b′′ ∈ V ′

i+2 since otherwise, by items (i) and (iii), (2) of Lemma 15,
the vertices vi+4, a′, b′, and b′′ together with an arbitrary vertex V ′′′

i induce K+
2,3. If there exists

an edge a∗b∗ 	= ab, where a∗ ∈ V ′
i and b∗ ∈ V ′

i+2, then b = b∗. Indeed, if b 	= b∗ then a 	= a∗ and ab∗ 	∈ E,
ba∗ 	∈ E, and vi+2, a, b, a∗, and b∗ induce W4.

Owing to Lemma 15 (item iii, (2)), the set V ′
i+4 must be empty since otherwise V ′′′

i = ∅. The set V ′
i+3

is completely nonadjacent to V ′
i since otherwise G would contain an induced subgraph P5. By items (i)

and (iii), (2) of Lemma 15, for every vertex x ∈ V ′
i+2, NV ′

i
(x) is a modulus of G; therefore, it contains

at most one vertex. Hence, V ′
i \ {a} and V ′

i+2 \ {b} are modules in G and max(|V ′
i |, |V ′

i+2|) ≤ 2.
By analogy, max(|V ′

i+1|, |V ′
i+3|) ≤ 2. Lemma 15 (item ii, (2)) and the facts that there is at most one edge

between V ′′′
i and V ′′

i+1 and G contains no nontrivial modules imply that |V ′′′
i | ≤ 2. Thus, |V | ≤ 17.

Lemma 18 is proved.

Lemma 19. If S = ∅ and for some i vertices a ∈ V ′
i and b ∈ V ′′

i+1 are nonadjacent then either
G ∈ Free({O3}) or |V | ≤ 14.

Proof. Items (iii), (1) and (iii), (3) of Lemma 15 imply that

5⋃

j=1, j �=i+2

Vj = ∅, V ′′′
i−2 ∪ V ′′′

i+1 ∪ V ′′′
i+2 ∪ V ′′′′ = ∅.

Note that if there exists a vertex c ∈ Vi+2 then, by Lemma 15 (item iii, (1)), ca 	∈ E and cb 	∈ E. Then
c, vi−1, b, vi+1, and a induce P5. Consequently, Vi+2 = ∅. If there exist vertices c1 ∈ V ′′′

i−1 and c2 ∈ V ′′′
i

then, by items (iii), (2), (iii), (3), and (iii), (4) of Lemma 15,

ac1 ∈ E, ac2 	∈ E, bc1 	∈ E, c1c2 ∈ E.

At the same time, c2b ∈ E since otherwise c2, vi−2, b, vi+1, and a induce P5. Then vi+1, c1, vi+2, b, and c2

induce W4. Thus, at least one of the sets V ′′′
i−1 and V ′′′

i is empty. But, by Lemma 17, we can assume that
at least one of these sets is nonempty.

Further we will separately consider the two cases: V ′′′
i−1 	= ∅ and V ′′′

i 	= ∅. Note that, by Lemma 18,
we can assume that, for every j, the set V ′

j is completely nonadjacent to V ′
j+2.

• Suppose that c ∈ V ′′′
i−1. Then V ′′′

i = ∅. Note that V ′
i−2 = ∅ by Lemma 15 (item iii, (2)). Next, from

Lemma 15 (item iii, (3)) we have V ′′
i−2 ∪ V ′′

i+2 = ∅ and V ′′
i−1 = ∅ since otherwise b, c, vi+1, and vi+2

together with an arbitrary element in V ′′
i−1 would induce K+

2,3.

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 15 No. 1 2021



108 RAZVENSKAYA, MALYSHEV

By Lemma 15 (item iii, (2)), the set V ′
i is completely adjacent to V ′′

i ∪ V ′′′
i−1 and V ′

i−1 ∪ V ′
i+2 is

completely nonadjacent to V ′′′
i−1. By Lemma 15 (item iii, (3)), V ′′

i+1 is completely adjacent to V ′′
i and

completely nonadjacent to V ′′′
i−1. The set V ′

i is completely nonadjacent to V ′′
i+1 since otherwise an element

in V ′
i , an adjacent element of V ′′

i+1, the vertices c, vi, and vi+1 would induce K+
2,3. The set V ′′

i is completely
nonadjacent to V ′′′

i−1; otherwise, an element of V ′′
i , an adjacent element of V ′′′

i−1, and also the vertices vi,
vi+1, and b would induce K+

2,3. The set V ′
i−1 is completely adjacent to V ′′

i ; otherwise, some its element
and a nonadjacent element in V ′′

i and also vi, vi+2, and c would induce P5. The set V ′′
i is completely

adjacent to V ′
i+2; otherwise, an element of V ′

i+2, a nonadjacent element of V ′′
i , and also vi−2, vi+1, and c

would induce P5. Lemma 15 (item iii, (2)) implies that each of the sets V ′
i−1, V ′

i , V ′
i+1, V ′

i+2, V ′′
i , V ′′

i+1,
and V ′′′

i−1 is a module in G; therefore, it contains at most one vertex. Consequently, |V | ≤ 12.

• Let c ∈ V ′′′
i . Then V ′′′

i−1 = ∅. By items (iii), (2) and (iii), (3) of Lemma 15, we have V ′
i−1 = V ′′

i−2 =
V ′′

i−1 = ∅. By items (iii), (2) and (iii), (3) of Lemma 15, V ′′′
i is completely adjacent to V ′

i+1 and completely
nonadjacent to V ′′

i+2; therefore, V ′
i+1 is completely nonadjacent to V ′′

i+2 since an element of V ′′
i+2 and

an element of V ′
i+1 adjacent to it, vi+1, vi+2, and c induce K+

2,3.

By Lemma 15 (item iii, (2)), V ′
i is completely nonadjacent to V ′′′

i . If a vertex b′ ∈ V ′′
i+1 is nonadjacent

to all vertices in V ′
i then {b′} is completely adjacent to V ′′′

i since otherwise b′, a vertex from V ′′′
i

nonadjacent to b′, a vertex from V ′
i nonadjacent to b′, vi+1, and vi−2 induce P5. Consequently, {b} is

completely adjacent to V ′′′
i . By Lemma 15 (item iii, (3)), V ′′

i is completely adjacent to V ′′
i+1 and completely

adjacent to V ′′′
i , which, in the case of V ′′

i 	= ∅, means that an arbitrary element in V ′′
i together with vi−1,

vi−2, b, and c induce K+
2,3. Therefore, V ′′

i = ∅.

By Lemma 15 (i), V ′′
i+1 is a clique; therefore, no vertex of V ′′′

i is adjacent to two vertices in V ′′
i+1 since

otherwise G would contain an induced subgraph K+
2,3. Consequently, V ′′′

i is completely nonadjacent
to V ′′

i+1 \ {b}. The set V ′′
i+1 \ {b} is completely adjacent to V ′

i since an element of V ′′
i+1 \ {b}, a nonadja-

cent element of V ′
i together with c, vi+1, and vi−2 induce P5. The set {b} is completely adjacent to V ′

i−2

because a, vi+1, b, and vi−1, and an element of V ′
i−2 nonadjacent to b induce P5. The set V ′′

i+1 \ {b}
is completely adjacent to V ′

i−2 since an element of V ′′
i+1 \ {b}, a nonadjacent element of V ′

i−2 together
with c, vi−1, and vi+2 induce P5.

The arguments of the last two paragraphs and items (iii), (2) and (iii), (3) of Lemma 15 imply that
each of the sets

V ′
i−2, NV ′

i
(b), N−

V ′
i
(b), V ′

i+1, V ′
i+2, V ′′

i+1 \ {b}, V ′′
i+2, V ′′′

i

is a module in G; therefore, it contains at most one vertex. Thus, |V | ≤ 14.
Lemma 19 is proved.

Lemma 20. If S = ∅ then either G is O3-free or |V | ≤ 161.

Proof. Items (iii), (1) and (iii), (2) of Lemma 15 imply that the set V ′
i ∪ {vi+1} for V ′

i 	= ∅ is not
a nontrivial module if and only if either there is an edge between V ′

i and V ′
i+2 ∪ V ′

i+3 or V ′
i is not

completely adjacent to V ′′
i+1 ∪ V ′′

i+3. If one of these situations is realized then we arrive to the case
of Lemmas 18 and 19, which means the validity of this assertion. Therefore, we may assume that

V ′
1 ∪ V ′

2 ∪ V ′
3 ∪ V ′

4 ∪ V ′
5 = ∅.

Since G ∈ Free({W4}), the graph G(V ′′′
i ) is P3-free for each i; i.e., G(V ′′′

i ) is a disjoint sum of com-
plete graphs. Since G ∈ Free({K+

2,3}), G(V ′′′
i ) has one or two connected components. By Lemma 15 (i),

V ′′
i+1 is a clique. Since G ∈ Free({K+

2,3}), no vertex in V ′′′
i is adjacent to two vertices in V ′′

i+1 and also
no two nonadjacent vertices in V ′′′

i can have a common neighbor in V ′′
i+1 or have a vertex in V ′′

i+1

nonadjacent to them simultaneously.
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Let Q be the set of vertices of some connected component of G(V ′′′
i ), where |Q| ≥ 2. Then, by

Lemma 15 (item iii, (1)), Vi−1 is empty. Items (iii), (1), (iii), (3), and (iii), (4) of Lemma 15 imply that
each vertex in the set

Vi−1 ∪
5⋃

j=1, j �=i+1

V ′′
j ∪ V ′′′

i−1 ∪ V ′′′
i+1 ∪ V ′′′′

is either adjacent to each vertex in Q or adjacent to none of them. If a vertex in Vi−2 ∪ Vi ∪ V ′′′
i−2 ∪ V ′′′

i+2

has neighbors in Q but is adjacent not to each vertex in Q then G contains an induced subgraph W4.
Consequently, each vertex from this set is either adjacent to each vertex in Q or adjacent to none of them.

Since G ∈ Free({K+
2,3}), no vertex in Vi+1 is adjacent to two vertices in Q and no vertex in Q is

adjacent to two vertices in Vi+1 by Lemma 16. This, Lemma 16 and the P5-freeness of G imply that
there are at most two edges between Q and Vi+1. Similarly, there are at most two edges between Q
and Vi+2. The W4-freeness of G implies that only one vertex x ∈ V ′′

i+1 can have neighbors in Q; therefore,
either |V ′′

i+1| ≤ 2 or |V ′′
i+1| ≥ 3 and V ′′′

i = Q, which stems from the arguments of the end of the second
paragraph. In the second case, by items (i), (iii), (1) and (iii), (3) of Lemma 15, the set V ′′

i+1 \ {x} is
a nontrivial module of G.

If |Q| ≥ 7 then Q must have two vertices adjacent to each vertex in Vi+1 ∪ Vi+2 and either simulta-
neously adjacent to x or simultaneously nonadjacent to x. Consequently, in this case, G has a nontrivial
module; therefore, |Q| ≤ 6. Hence, |V ′′′

j | ≤ 12 for each j since every such set consist of at most two
cliques with at most 6 vertices each.

Show that |V ′′
i | ≤ 2 for each i. By items (iii), (1) and (iii), (3) of Lemma 15, each vertex of the set

V ′′′′ ∪
5⋃

j=1, j �=i−2

Vj ∪
5⋃

j=1, j �=i

V ′′
j ∪

5⋃

j=1, j �=i−1

V ′′′
j

is either adjacent to each vertex in V ′′
i or adjacent to none of them. By Lemma 15 (i), V ′′

i is a clique.
In view of the W4-freeness of G, it follows that each vertex in Vi−2 is either adjacent to all vertices in V ′′

i
or adjacent to none of them. Therefore, V ′′

i is a module in G if V ′′′
i−1 = ∅ and has at most one vertex.

The arguments in the previous paragraph imply that |V ′′
i | ≤ 2 if V ′′′

i−1 	= ∅.

Consider the set Vi. By Lemma 16, it is independent. By Lemma 15 (i), Vi is completely adjacent
to Vi−1 ∪ Vi+1 ∪ V ′′′

i+1 and completely nonadjacent to

5⋃

j=1, j �=i+2

V ′′
j .

Each vertex in Vi is either adjacent to all vertices in V ′′
i+2 or adjacent to none of them. Since G ∈

Free({W4}); for every two adjacent elements in V ′′′
i , each element of Vi is either simultaneously adjacent

to them or simultaneously nonadjacent to them. Since G ∈ Free({K+
2,3}), no vertex in V ′′′

i is adjacent
to two vertices in Vi. Similar assertions also hold for V ′′′

i+2. Therefore, Vi contains at most four elements
each of which has a neighbor in V ′′′

i ∪ V ′′′
i+2. We proved above that there are at most four edges between Vi

and V ′′′
i−1 and also between Vi and V ′′′

i−2.

Denote by Ṽi the set of all vertices in Vi not having neighbors in V ′′′
i−2 ∪ V ′′′

i−1 ∪ V ′′′
i ∪ V ′′′

i+2. If |Vi| ≥ 13
then |Ṽi| ≥ |Vi| − 12. Recall that, by Lemma 16, the sets Vi−2, Vi, and Vi+2 are independent. Hence,
since G ∈ Free({P5}), for every two vertices a, b ∈ Vi, one of the sets NVi−2(a) and NVi−2(b) is a subset
of the other. The same holds for NVi+2 (a) and NVi+2 (b). Thus, all vertices in Vi having neighbors in Vi−2

(respectively, in Vi+2) have a common neighbor therein. Hence, since G ∈ Free({K+
2,3}), Vi has at most

two vertices such that the vertex has a neighbor in Vi−2 (respectively, in Vi+2). Therefore, |Ṽi| ≤ 5 since
otherwise G would contain a nontrivial module. Hence, |Vj | ≤ 17 for each j.
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Items (iii), (1)–(4) of Lemma 15 imply that |V ′′′′| ≤ 1. Thus,

|V | ≤ 5 + 5 · 17 + 5 · 2 + 5 · 12 + 1 = 161.

Lemma 20 is proved.

In the following six lemmas, we consider the situation when S 	= ∅ while proving that G has few
vertices. Since G ∈ Free({P5}), we have

Lemma 21. Each vertex a ∈ S adjacent to b ∈ V ′′′
i has no neighbor in S nonadjacent to b.

Refer to the vertices of the set N(v1) ∪ N(v2) ∪ N(v3) ∪ N(v4) ∪ N(v5) as the dominating cycle
of C. Henceforth, we assume that the cycle C dominates the maximal number of vertices among all
induced 5-cycles of G. By Lemma 15 (ii), we have

V̂ ⊆
5⋃

i=1

(
V ′′

i ∪ V ′′′
i

)
∪ V ′′′′.

Lemma 22. Suppose that there is a vertex x ∈ S adjacent to y ∈ V ′′′
i . Then the following

properties are fulfilled simultaneously:

(i) The set {y} is completely adjacent to Vi+1 ∪ Vi+2 ∪ V ′′
i+1; moreover, |Vi+1| ≤ 1 and |Vi+2| ≤ 1.

(ii) There are no adjacent vertices a and b such that a ∈ V ′
j and b ∈ V ′

j+2 for some j.

(iii) Every vertex in V ′′′
i−2 ∪ V ′′′

i+2 is adjacent to exactly one of the vertices x and y.

Proof. (i) If there exists x′ ∈ Vi+1 ∪ Vi+2 then it is nonadjacent to x by Lemma 15 (ii). Consequently,
x′y ∈ E since otherwise x, y, x′, vi, and also vi−1 or vi+1 induce P5; therefore, {y} is completely
adjacent to Vi+1 ∪ Vi+2. By Lemma 16, each of the sets Vi+1 and Vi+2 is independent. Therefore, if
at least one of them has two elements then, together with vi−2, vi+2, and y, these two elements induce
a subgraph K+

2,3.

If there exists a vertex z ∈ V ′′
i+1 nonadjacent to y then zx ∈ E since otherwise z, vi, vi+1, y, and x

would induces P5. Then the induced 5-cycle (vi, vi+1, z, x, y) dominates more vertices than C. Indeed,
{y} is completely adjacent to Vi+2 and completely adjacent to V ′

i+2 (the last holds by Lemma 15 (item
iii, (2)). We have a contradiction to the choice of C. Consequently, {y} is completely adjacent to V ′′

i+1.

(ii) Suppose the contrary. Symmetry considerations and the fact that V ′
i+4 = ∅ imply that,

by Lemma 15 (item iii, (2)), it suffices to consider the case of a ∈ V ′
i and b ∈ V ′

i+2. By items (ii)
and (iii), (2) of Lemma 15, ax 	∈ E, bx 	∈ E, ay 	∈ E, and by ∈ E. But then vi+1, a, b, y, and x induce P5.

(iii) Let z ∈ V ′′′
i−2 ∪ V ′′′

i+2. We can assume without loss of generality that z ∈ V ′′′
i−2. The vertex z must

be adjacent to at least one of the vertices x and y since otherwise x, y, vi−2, z, and vi+1 would induce P5.
At the same time, z cannot be adjacent to x and y simultaneously; otherwise, x, y, z, vi−2, and vi would
induce K+

2,3.

Lemma 22 is proved.

The proof of the following auxiliary assertion is the longest and the most technically difficult proof
of the article. Unfortunately, due to the continuity of the proof, the authors do not know how to reduce it
or partition into some independent smaller parts.

Lemma 23. Suppose that there exists a vertex x ∈ S adjacent to vertices y ∈ V ′′′
i and y′ ∈ V ′′′

i−2.
Then |V | ≤ 16.

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 15 No. 1 2021



EFFICIENT SOLVABILITY 111

Proof. Clearly, NV ′′′
i−2

(x) is completely nonadjacent to NV ′′′
i

(x) since otherwise G would contain

an induced subgraph K+
2,3. By items (iii) (2) and (iii) (3) of Lemma 15,

V ′
i−1 = V ′

i+2 =
5⋃

j=1, j �=i

V ′′
j = ∅.

Hence, owing to items (ii), (iii), (1), and (iii), (2) of Lemma 15 and Lemma 22 (ii), we conclude that
the set V ′

j ∪ {vj+1} is a module in G for each j. Thus, V ′
j is empty for all j because G is atomic.

By Lemma 15 (item iii, (3)), either V ′′
i = ∅ or V ′′′′ = ∅. By items (iii), (3) and (iii), (4) of Lemma 15,

the set V ′′
i ∪ V ′′′′ is completely nonadjacent to V ′′′

i−2 ∪ V ′′′
i . Consequently, {x} is completely adjacent

to V ′′
i ∪ V ′′′′; otherwise, G would contain an induced subgraph P5. Thus, |V ′′

i ∪ V ′′′′| ≤ 1 since oth-
erwise, by Lemma 15 (i), G contains an induced subgraph K+

2,3. The set V ′′′
i−1 is completely adjacent

to V ′′′
i−2 ∪ V ′′′

i by Lemma 15 (item iii, (4)). Hence, owing to the {W4,K
+
2,3}-freeness of G, we have

|V ′′′
i−1| ≤ 1.

Check that each vertex y′′ ∈ V ′′′
i+1 ∪ V ′′′

i+2 is adjacent to x. Suppose the contrary. Without loss
of generality, we can assume that y′′ ∈ V ′′′

i+2 is nonadjacent to x. Then y′′y′ ∈ E by Lemma 15 (item
iii, (4)). By Lemma 22 (item iii), y′′y ∈ E. Then y, y′, y′′, vi, and vi−1 induce K+

2,3. Hence, {x} is

completely adjacent to V ′′′
i+1 ∪ V ′′′

i+2, which and the K+
2,3-freeness of G imply that V ′′′

i+1 and V ′′′
i+2 are

independent sets. Consequently, by Lemma 15 (item iii, (4)), owing to the K+
2,3-freeness of G, we have

|V ′′′
i+1| ≤ 1 and |V ′′′

i+2| ≤ 1.

Check that if N−
V ′′′

i
(x) is nonempty then it is completely nonadjacent to NV ′′′

i
(x) and completely

adjacent to NV ′′′
i−2

(x); moreover,

N−
V ′′′

i−2
(x) = ∅, N−

V ′′′
i ∩V̂

(x) = ∅.

Suppose that y1 ∈ V ′′′
i is nonadjacent to x. Consider arbitrary vertices y2 ∈ NV ′′′

i
(x) and y3 ∈ NV ′′′

i−2
(x)

that necessarily exist, and y4 ∈ N−
V ′′′

i−2
(x). Then y1y2 	∈ E since otherwise y1y3 	∈ E; so that the ver-

tices vi, vi−2, y1, y2, and y3 should not induce W4, and y1, y2, x, y3, and vi+1 induce P5. The vertices y1

and y3 must be adjacent; otherwise, y1, vi+2, y2, x, and y3 would induce P5. Similarly, y3y4 	∈ E and
y2y4 ∈ E. Then y1y4 ∈ E since otherwise vi+1, y1, y2, y3, and y4 would induce P5; but then vi, vi+1, y1,
y2, and y4 induce W4. Suppose that y1 is adjacent to a vertex x∗ ∈ S. Then x∗y3 	∈ E since otherwise
vi−2, vi, y1, y3, and x∗ would induce K+

2,3; and x∗y2 	∈ E since otherwise y2, x∗, y1, y3, and vi+1 would
induce P5. The vertices x and x∗ are nonadjacent since otherwise x∗, x, y3, vi+1, and vi+2 would
induce P5. Consequently, x∗, y1, vi−2, y2, and x induce P5.

Since G is {P5,K
+
2,3}-free; therefore, the above implies that every vertex x∗ ∈ S \ {x} either has

no neighbors in

5⋃

j=1, j �=i−1

V ′′′
j

or

N(x∗) ∩
5⋃

j=1, j �=i−1

V ′′′
j = N(x) ∩

5⋃

j=1, j �=i−1

V ′′′
j ,

and {x∗} is completely adjacent to V ′′
i ∪ V ′′′′.

Since G is a connected P5-free graph and V ′′′′ is completely nonadjacent to V ′′′
1 ∪ V ′′′

2 ∪ V ′′′
3 ∪ V ′′′

4 ∪
V ′′′

5 by Lemma 15 (item iii, (4)); therefore, each vertex in S is adjacent to a vertex in V̂ . Show that every
two adjacent vertices x1, x2 ∈ S satisfy N

V̂
(x1) = N

V̂
(x2). Suppose the contrary. Then the symmetric
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difference of NV̂ (x1) and NV̂ (x2) must consist of a unique element y∗ ∈ V ′′′′; otherwise, G would contain
an induced P5. Thus, we can assume that NV̂ (x2) ⊃ NV̂ (x1) and NV̂ (x2) \ NV̂ (x1) = {y∗}; therefore,

N(x1) ∩
5⋃

j=1, j �=i−1

V ′′′
j = ∅

since otherwise x1y
∗ ∈ E. Consequently, x2y ∈ E; otherwise, x1, x2, y∗, vi−2, and y would induce P5.

Then x1, x2, y, vi, and vi−1 induce P5. Thus, every two adjacent vertices in S have identical sets
of neighbors in V̂ . Due to the atomicity of G, it follows that S is an independent set; otherwise, the vertex
set of some connected component of G(S) constitutes a nontrivial module.

Check that either |V ′′
i ∪ V ′′′

i−1 ∪ V ′′′′| ≤ 1 or |V | ≤ 10. The inequality |V ′′
i ∪ V ′′′

i−1 ∪ V ′′′′| ≤ 1 fails only
if V ′′′

i−1 = {z1} and z2 ∈ V ′′
i ∪ V ′′′′. If z2 ∈ V ′′

i then z1z2 	∈ E; otherwise, vi, vi+1, y′, z1, and z2 would
induce W4; and xz1 ∈ E; otherwise, x, z2, vi, vi−1, and z1 would induce P5. Therefore, by Lemma 22 (i),
the induced 5-cycle (x, z2, vi, vi−1, z1) dominates more vertices than C. Suppose that z2 ∈ V ′′′′. Then
yz2 	∈ E, y′z2 	∈ E, and z1z2 	∈ E by Lemma 15 (iii, (4)). The set Vi is empty since otherwise each its
element is adjacent to y′ and nonadjacent to x and z2 (by items (ii) and (iii), (1) of Lemma 15 and
Lemma 22 (i)); and hence this element and vi−1, z2, vi+1, and y′ induce P5. By analogy, Vi+1 = ∅. If
V ′′′

i+2 = ∅ then the induced 5-cycle (z2, vi+1, z1, y, vi−2) dominates more vertices than C, which follows
from Lemma 22 (i); therefore, we can assume that V ′′′

i+2 	= ∅. Likewise, we can assume that V ′′′
i+1 	= ∅;

otherwise, the induced 5-cycle (z2, vi+2, z1, y, vi) dominates more vertices than C. Lemma 15 (item
iii, (4)) and the K+

2,3-freeness of G imply that V ′′′
j = {yj} for each j. The results of the third paragraph

imply that (y1, y2, y3, y4, y5) is an induced 5-cycle to whose every vertex x is adjacent. Obviously, if some
vertex x′ is adjacent to at least one of the vertices y1–y5 then x′ is adjacent to each of these vertices.
Consequently, G contains an induced subgraph W4. The vertex z2 cannot be adjacent to a vertex
in S \ {x} since otherwise {z2} would be a separating clique due to the independence of S.

Henceforth, we assume that |V | ≥ 11. Recall that each vertex in S is adjacent to a vertex in V̂ and S
is independent. Since S is independent and |V ′′

i ∪ V ′′′
i−1 ∪ V ′′′′| ≤ 1, we have

{

x∗ ∈ S | N(x∗) ∩
5⋃

j=1, j �=i−1

V ′′′
j = ∅

}

= ∅;

otherwise, V ′′
i ∪ V ′′′

i−1 ∪ V ′′′′ would be a separating clique.
Show that we can assume that Vi−2 	= ∅. Suppose that Vi−2 = ∅. By Lemma 15 (item iii, (1)) and

Lemma 22 (item i), the set Vi−1 is completely adjacent to V ′′′
i−2 ∪ V ′′′

i ; therefore, we can assume that
Vi−1 = ∅; otherwise, by Lemma 15 (item ii), for the cycle (x, y, y′, vi+2, vi+1), which dominates the same
number of vertices as C, this case is equivalent to the case of Vi−2 	= ∅ for C. Likewise, Vi+2 = ∅.
By Lemma 16, each of the sets Vi and Vi+1 is independent. Thus, by Lemma 22 (i), in view of the K+

2,3-
freeness of G, we have max(|Vi|, |Vi+1|) ≤ 1.

Suppose that S \ {x} is nonempty and x∗ ∈ S \ {x}. Then either NV̂ (x) = NV̂ (x∗) or one of the ver-
tices x and x∗ is adjacent to an element of V ′′′

i−1 and the other is not. In the second case, xx∗ 	∈ E since
G ∈ Free({P5}); and, for the cycle (x, y, vi+2, vi+1, y

′) that dominates the same number of vertices as C,
this case is equivalent to the case of Vi−2 	= ∅ for C. Consequently, we can assume that S = {x} since
G is atomic.

Verify that max(|V ′′′
i−2|, |V ′′′

i |) ≤ 2. Consider only the case of V ′′′
i . In view of the K+

2,3-freeness
of G and the result of the fourth paragraph, the set NV ′′′

i
(x) either consists of a single vertex and

N−
V ′′′

i
(x) is a clique or NV ′′′

i
(x) consists of two nonadjacent vertices, but then N−

V ′′′
i

(x) = ∅. In view

of the W4-freeness of G and Lemma 22 (i), the set Vi+1 is completely adjacent to NV ′′′
i

(x) and completely

nonadjacent to N−
V ′′′

i
(x). The result of the third paragraph and the P5-freeness of G imply that N−

V ′′′
i

(x)

is completely adjacent to V ′′′
i+2. By Lemma 22 (i), Vi is completely adjacent to V ′′′

i−2, whence, in view
of the result of the fourth paragraph and the W4-freeness of G, it follows that Vi ∪ S is completely
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nonadjacent to N−
V ′′′

i
(x). These observations and items (iii), (3) and (iii), (4) of Lemma 15 imply that

N−
V ′′′

i
(x) is a module in G; therefore, it contains more than one element.

We obtain the inequality

|V | ≤ |V (C)| + |Vi| + |Vi+1| + |V ′′′
i−2| + |V ′′′

i | + |V ′′′
i+1| + |V ′′′

i+2| + |V ′′
i ∪ V ′′′

i−1 ∪ V ′′′| + |S| ≤ 15.

Henceforth, we assume that V ′
i−2 	= ∅.

Check that every two vertices a ∈ Vi−2 and b ∈ V ′′′
i ∪ V ′′′

i−2 are nonadjacent. Without loss of general-
ity, we can assume that b ∈ V ′′′

i . If ay′ ∈ E then a, y′, b, vi−2, and vi induce a subgraph W4 (if by′ 	∈ E)
or by′ ∈ E. In the second case, b 	= y and ay 	∈ E (otherwise, a, vi, vi−2, y′, and y would induce W4),
yb 	∈ E (otherwise, vi−2, vi, a, b, and y would induce W4), ax 	∈ E (by Lemma 15 (ii)), bx 	∈ E (otherwise,
x, b, y′, vi−2, and vi would induce a subgraph K+

2,3) and x, y, vi+2, b, and a induce a subgraph P5. Hence,
ay′ 	∈ E. Then y′b ∈ E since otherwise a, b, vi+2, vi+1, and y′ would induce P5. Consequently, b 	= y and
bx 	∈ E; otherwise, x, y′, b, vi−2, and vi would induce K+

2,3. The vertices a and y are nonadjacent since
otherwise a, y, x, y, and vi+1 would induce P5. The vertices b and y are nonadjacent since otherwise a,
b, y, y′, and vi+2 would induce K+

2,3. By Lemma 15 (ii), ax 	∈ E; therefore, a, b, vi+2, y, and x induce
a subgraph P5.

Check that there are no adjacent vertices a and b the first of which belongs to Vi−2 and
the second, to Vi ∪ Vi+1. From symmetry considerations, we can consider only the case when b ∈ Vi.
By Lemma 15 (ii), we obtain ax 	∈ E and bx 	∈ E. The vertex a is nonadjacent to y and y′ simultaneously.
By Lemma 22 (1), y′b ∈ E. At the same time, by ∈ E since otherwise a, b, y′, x, and y induce
a subgraph P5. Consequently, a, b, y, y′, and vi induce K+

2,3.

Recall that Vi−2 is completely nonadjacent to Vi ∪ Vi+1 ∪ V ′′
i ∪ V ′′

i−2. Moreover, since, by the results
of the third paragraph, the set {x} is completely adjacent to V ′′′

i+1 ∪ V ′′′
i+2; by Lemma 22 (i), we infer

that Vi−2 is completely adjacent to V ′′′
i+1 ∪ V ′′′

i+2. By Lemma 16, Vi−2 is independent. In view of these
circumstances and items (ii) and (iii), (1) of Lemma 15, we can assume that Vi−2 = {a′} since otherwise
G contains a nontrivial module. The same considerations imply that a′ is adjacent to some element
in V ′′

i ∪ V ′′′′; otherwise, {a′, vi−1} is a nontrivial module in G. We can assume that V ′′
i ∅ and V ′′′′ 	= ∅.

Indeed, if V ′′
i 	= ∅ then V ′′′′ = ∅, and (a′, vi, vi+1, vi+2, vi−2) is an induced 5-cycle whose all vertices

are adjacent to some element in V ′′
i . This situation is equivalent to the fact that V ′′′′ 	= ∅.

By the result of the seventh paragraph, we conclude that |V ′′′′| = 1 and V ′′
i = V ′′′

i−1 = ∅. Lemma 15
(item iii (4)), Lemma 16, Lemma 22 (i), and the fact that Vi−2 = {a′} and G ∈ Free({K+

2,3}) imply
that |Vj | ≤ 1 for each j, |V ′′′

i−2| ≤ 1, and |V ′′′
i | ≤ 1. The results of the fifth and eighth paragraphs and

the atomicity of G imply that S = {x}. Thus,

|V | ≤ |V (C)| +
∣
∣
∣
∣
∣

5⋃

j=1

Vj

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

5⋃

j=1, j �=i−1

V ′′′
j

∣
∣
∣
∣
∣
+ |V ′′′′| + |S| ≤ 16.

Lemma 23 is proved.

Lemma 24. If a vertex x ∈ S is adjacent to vertices y1, y2 ∈ V ′′′
i then |V | ≤ 21.

Proof. The K+
2,3-freeness of G, items (iii), (3) and (iii), (4) of Lemma 15, and Lemma 22 (i) imply that

y1y2 	∈ E and the sets Vi+1, Vi+2, V ′′
i , V ′′

i+1, V ′′
i+2, V ′′′

i−1, V ′′′
i+1, and V ′′′′ are empty. By Lemma 15 (item

iii, (1)), V ′′
i−1 = V ′′

i−2 = ∅. By Lemma 22 (iii) and Lemma 23, we can assume that each element of the set
V ′′′

i−2 ∪ V ′′′
i+2 is adjacent to y1 and y2 simultaneously. Therefore, V ′′′

i−2 ∪ V ′′′
i+2 = ∅ since otherwise G would

contain an induced subgraph W4. Items (ii), (iii), (1), and (iii), (2) of Lemma 15 and Lemma 22 (i) imply
that V ′

j = ∅; otherwise, V ′
j ∪ {vj+1} is a nontrivial module in G. Items (ii) and (iii), (1) of Lemma 15

imply that Vi−1 = ∅ since otherwise Vi−1 ∪ {vi} would be a nontrivial module in G.
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Since G ∈ Free({W4}), we have V ′′′
i = Q1 � Q2 for the cliques Q1 and Q2; moreover, y1 ∈ Q1 and

y2 ∈ Q2. Since G ∈ Free({K+
2,3}), we have NQ1(x) = {y1} and NQ2(x) = {y2}. Hence, since G is P5-

free, at least one of the cliques Q1 and Q2 contains exactly one vertex. Assume that Q2 = {y2}. Since
G ∈ Free({W4}), each of the vertices Vi−2 ∪ Vi is either adjacent to all vertices in Q1 or adjacent to none
of them. Thus, we can speak of the adjacency of the vertices in Vi−2 ∪ Vi with Q1 and Q2. Consequently,
|Q1 \ V̂ | ≤ 1 because Q1 \ V̂ is a module in G. Since G ∈ Free({W4}), no vertex in Vi−2 ∪ Vi is adjacent
to Q1 and Q2 simultaneously. Since G ∈ Free({K+

2,3}), no vertex in V ′′′
i is adjacent to two and more

vertices in Vi−2 or in Vi.
By Lemma 21, each element of S is adjacent to some vertex in V ′′′

i . The set S is independent. Indeed,
otherwise, by Lemma 21, the vertices of every connected component of G(S) together with at least
two vertices would constitute a nontrivial module in G. Since S is independent and G is K+

2,3-free and
contains no separating cliques; therefore, each vertex in S is adjacent to exactly two vertices in V ′′′

i , one
of which is y2. Hence, |Q1 ∩ V̂ | ≤ 2 because if Q1 ∩ V̂ contains two vertices a1 and a2 different from y1

then there exist vertices b1, b2 ∈ S such that

x 	∈ {b1, b2}, a1b1, a2b2 ∈ E, a1b2, a2b1 	∈ E, b1y1, b2y1 	∈ E, b1y2, b2y2 ∈ E.

Then b1, y2, b2, a2, and y1 induce P5. Since |Q1 ∩ V̂ | ≤ 2, S is an independent set, and each vertex in S

is adjacent to y2 and to exactly one more vertex in Q1 ∩ V̂ ; therefore, we have |S| ≤ 2 since otherwise G
would contain a nontrivial module.

Thus, |V ′′′
i | ≤ 4 and |S| ≤ 2. Recall that no vertex in V ′′′

i is adjacent to two or more vertices in Vi−2

or Vi. Consequently, if |Vi−2| ≥ 5 then there exist at least |Vi−2| − 4 vertices each of which is adjacent
to no vertex in V ′′′

i . Analogously, if |Vi| ≥ 5 then there exist at least |Vi| − 4 vertices each of which is
adjacent to no vertex in V ′′′

i . If a and b are vertices each of which has no neighbor in V ′′′
i then ab 	∈ E.

Indeed, otherwise, by Lemma 15 (ii), a, b, vi+2, y1, and x would induce P5. Thus, |Vi−2| ≤ 5 and |Vi| ≤ 5
since otherwise G would contain a nontrivial module consisting of two vertices from Vi−2 or two vertices
from Vi; therefore, |V | ≤ 21.

Lemma 24 is proved.

We will assume that at least one of the sets V ′′′′ and
⋃5

i=1 Vi is empty. Indeed, if v′ ∈ Vi then
C ′ = (vi−2, vi−1, vi, v

′, vi+2) is an induced 5-cycle of G; moreover, it dominates the same number
of vertices as C. By items (iii), (1) and (iii), (3) of Lemma 15, each element in V ′′′′ is adjacent to four
vertices in C ′ and there is no vertex adjacent to all its vertices simultaneously.

Lemma 25. Suppose that there is x ∈ S adjacent to y ∈ V ′′′
i ; moreover, V ′′

i ∪ V ′′
i+2 ∪ V ′′′′ 	= ∅.

Then |V | ≤ 16.

Proof. If there exists a vertex x′ ∈ S adjacent to a vertex y′ ∈ V ′′
j then for each j′ there are no adjacent

vertices a ∈ Vj′ and b ∈ Vj′+2. Indeed, we can consider only the cases of j ∈ {j′, j′ + 3}. In both cases,
ay′ 	∈ E and by′ 	∈ E by items (iii), (1) of Lemma 15. By Lemma 15 (ii), we have ax′ 	∈ E and bx′ 	∈ E.
In the first case, y′, vj′+3, vj′+4, b, and a, and, in the second case, x′, y′, vj′+4, b, and a induce P5.

Suppose that there exists a vertex y′ ∈ V ′′
i ∪ V ′′

i+2. Symmetry considerations imply that it suffices
to consider only the case when y′ ∈ V ′′

i+2. Items (iii), (3) and (iii), (4) of Lemma 15 and the K+
2,3-freeness

of G imply that yy′ 	∈ E and V ′′
i = V ′′′′ = ∅. By Lemma 15 (iii, (1)), V ′′

i−2 = V ′′
i−1 = ∅. Each vertex in S

adjacent to an element in V ′′′
i must be adjacent to all elements in V ′′

i+2. Otherwise, vi−1, a vertex in V ′′
i+2,

and a vertex from V ′′′
i nonadjacent to it, vi+2, and some vertex in S induce P5. Consequently, y′x ∈ E

and V ′′
i+2 = {y′} since otherwise x, two arbitrary vertices in V ′′

i+2, vi, and vi+2 induce K+
2,3. If there exists

a vertex y′′ ∈ V ′′
i+1 then y′′ must be adjacent to y and y′ by Lemma 15 (iii, (3)) and Lemma 22 (i), but

then y, y′, y′′, vi+1, and vi+2 induce K+
2,3. Therefore, V ′′

i+1 = ∅. If there exists a vertex y′′′ ∈ V ′′′
i and

y′′′ 	= y then, by Lemma 15 (iii, (3)) and the K+
2,3-freeness of G, we have y′y′′′ 	∈ E and yy′′′ ∈ E. Since

G ∈ Free({K+
2,3}), we have xy′′′ 	∈ E. Therefore, vi−1, y′, x, y, and y′′′ induce P5. Hence, V ′′′

i = {y}.
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Owing to items (ii), (iii), (1), (iii), (2) of Lemma 15 and Lemma 22 (ii), we have V ′
j = ∅ for all j. This

is obvious for j ∈ {i − 2, i, i + 2} since otherwise the set V ′
j ∪ {vj+1} would be a nontrivial module in G.

Check that V ′
j = ∅ for j ∈ {i − 1, i + 1}. From symmetry considerations, examine only j = i + 1. If

ỹ ∈ V ′
i+1 then ỹy′ ∈ E and ỹx 	∈ E by items (ii) and (iii), (2) of Lemma 15 and ỹy′ 	∈ E since otherwise

vi+1, vi+2, y, y′, and ỹ would induce K+
2,3. Then vi−1, y′, x, y, and ỹ induce P5. By Lemma 15 (iii, (1)),

Vi−1 = Vi+1 = ∅.

If y∗ ∈ V ′′′
i−2 then, by Lemma 22 (iii) and Lemma 23, we can assume that yy∗ ∈ E and xy∗ 	∈ E.

By Lemma 15 (iii, (3)), y′y∗ 	∈ E. Then vi−1, y′, vi+2, y, and y∗ induce P5. If y∗ ∈ V ′′′
i−1 ∪ V ′′′

i+1 then
yy∗ ∈ E by Lemma 15 (iii,(4)). If y∗ ∈ V ′′′

i−1 then y∗y′ 	∈ E by Lemma 15 (iii, (3)) and either vi+1, y∗, y,
x, and y′ (if xy∗ 	∈ E) or vi+1, y∗, x, y′, and vi−2 (if xy∗ ∈ E) induce P5. If y∗ ∈ V ′′′

i+1 then y∗y′ 	∈ E since
otherwise y∗, y′, y, vi−2, and vi+2 would induce W4. If xy∗ 	∈ E then vi+1, y∗, vi−2, y′, and x induce P5.
If xy∗ ∈ E then (y∗, vi+2, vi+1, y

′, x) is an induced 5-cycle in G that, by Lemma 22 (i), dominates more
vertices than C. Hence, V ′′′

i−2 = V ′′′
i−1 = V ′′′

i+1 = ∅.

By Lemma 15 (iii, (1)), {y′} is completely nonadjacent to Vi−2 ∪ Vi+2. By Lemma 16, Vi is in-
dependent. Since G ∈ Free({W4}), we have |NVi(y

′)| ≤ 1. Recall that, by Lemma 15 (ii), the set
Vi−2 ∪ Vi ∪ Vi+2 is completely nonadjacent to S. By Lemma 22 (i), the set {y} is completely adjacent
to Vi+2. At the same time, {y} is completely nonadjacent to Vi−2 ∪ NVi(y

′) since otherwise some its
element and y, x, y′, and vi−1 induce P5. Consequently, if V ′′′

i+2 = ∅ then each of the sets Vi−2, N−
Vi

(y′),
and Vi+2 is a module in G; therefore, it has at most one element.

Suppose that V ′′′
i+2 	= ∅. Then V ′′′

i+2 is completely adjacent to {y′} by Lemma 15 (iii, (3)). By item (iii)
of Lemma 22 and Lemma 23, we can assume that each element of V ′′′

i+2 is adjacent to y and nonadjacent
to x. Since the graph G is W4-free, V ′′′

i+2 is a clique. Since G is K+
2,3-free, Vi+2 is completely adjacent

to V ′′′
i+2 and Vi−2 ∪ NVi(y

′) is completely adjacent to V ′′′
i+2. The set V ′′′

i+2 is either completely adjacent
to NVi(y

′) or completely nonadjacent to it since otherwise vi+2 and y′, an element of NVi(y
′), an arbitrary

element of NVi∩V ′′′
i+2

(y′), and an arbitrary element of V ′′′
i+2 \ NVi(y

′) would induce P5.

Suppose that a vertex x′′ ∈ S is adjacent to a vertex y′′ ∈ V ′′′
i+2. Clearly, x′′ is not adjacent to y since

G ∈ Free({K+
2,3}). Then x′′y′ ∈ E; otherwise, the vertices y′, x, y, y′′, and x′′ induce P5. At the same

time, xx′′ 	∈ E; otherwise, x′′, x, y, vi, and vi+1 induce P5. Note that (y′, x′′, y′′, y, x) is an induced 5-
cycle dominating more vertices than the cycle C. Consequently, each of the sets Vi−2, N−

Vi
(x), Vi+2, and

V ′′′
i+2 is a module in G and contains at most one vertex.

Due to the connectedness and P5-freeness of G, each vertex in S is adjacent to a vertex in V̂ .
By Lemma 21, each element in S adjacent to y has no neighbor in S that is adjacent to y. By the P5-
freeness of G, the same assertion also holds for y′. Since neither {y} nor {y′} is a separating clique in G,
we have NS(y) = NS(y′). Hence, S = {x}; otherwise, S is a nontrivial module in G. Thus, we have
the inequality

|V | ≤ |V (C)| + |Vi−2| + |Vi+2| + |NVi(x)| + |N−
Vi

(x)| + |V ′′
i+2| + |V ′′′

i | + |V ′′′
i+2| + |S| ≤ 13.

Let y′ ∈ V ′′′′. Then

5⋃

j=1

V ′′
j = ∅,

5⋃

j=1

V ′
j = ∅,

where the first holds by Lemma 15 (iii, (3)), and the second, by items (ii), (iii), (1), (iii), (2) of Lemma 15
and by Lemma 22 (ii).

By our assumptions before the statement of the lemma, we have V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 = ∅.
By analogy with the arguments in the second paragraph, it is not hard to show that yy′ 	∈ E,
y′x ∈ E, V ′′′

i = {y}, and V ′′′′ = {y′}. Each element of the set V ′′′
i−2 ∪ V ′′′

i+2 is nonadjacent to y′ by
Lemma 15 (iii, (4)). Owing to Lemma 22 (iii) and Lemma 23, we can assume that each element of the set
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V ′′′
i−2 ∪ V ′′′

i+2 is adjacent to y and nonadjacent to x. Therefore, V ′′′
i−2 ∪ V ′′′

i+2 = ∅ since otherwise every its
element together with an element of {vi−1, vi+1}, y, x, and y′ would induce P5.

Suppose that y∗ ∈ V ′′′
i−1 ∪ V ′′′

i+1. Without loss of generality, we can assume that y∗ ∈ V ′′′
i−1.

By Lemma 15 (iii, (4)), y∗y ∈ E. If y∗x 	∈ E then, by Lemma 15 (iii, (4)), the cycle (y′, vi+1, y
∗, y, x) is

induced and dominates more vertices than C. Therefore, for each vertex x′ ∈ S adjacent to y, the set {x′}
is completely adjacent to V ′′′

i−1 ∪ V ′′′
i+1 ∪ V ′′′′. This and the K2,3-freeness of G imply that |V ′′′

i−1| ≤ 1 and
|V ′′′

i+1| ≤ 1.

Since G ∈ Free({P5}) and x is completely adjacent to V ′′′
i−1 ∪ V ′′′

i ∪ V ′′′
i+1 ∪ V ′′′′, each vertex in S

that has a neighbor in V̂ is either adjacent to all vertices in V ′′′
i−1 ∪ V ′′′

i ∪ V ′′′
i+1 ∪ V ′′′′ or adjacent to y′

and not adjacent to any of the vertices in V ′′′
i−1 ∪ V ′′′

i ∪ V ′′′
i+1. Since {y′} is not a separating clique and

G ∈ Free({P5}), each vertex in S is adjacent to each element of the set V ′′′
i−1 ∪ V ′′′

i ∪ V ′′′
i+1 ∪ V ′′′′. Since

G does not contain nontrivial modules, S = {x}. Therefore, we have

|V | ≤ |V (C)| + |V ′′′
i−1| + |V ′′′

i+1| + |V ′′′′| + |S| ≤ 9.

Lemma 25 is proved.

Lemma 26. If S 	= ∅ then |V | ≤ 21.

Proof. Suppose to the contrary that |V | ≥ 22. Show that, in this case, V̂ is a separating clique in G.
Recall that

V̂ ⊆
5⋃

i=1

(V ′′
i ∪ V ′′′

i ) ∪ V ′′′′.

If V̂ is not a separating clique then V̂ contains two nonadjacent vertices a and b. The vertex a has
a neighbor a′ ∈ S, and the vertex b has a neighbor b′ ∈ S.

Let a ∈ V ′′′
i . Then V ′′

i−2 = V ′′
i−1 = ∅ by Lemma 15 (iii, (3)). If V ′′

i ∪ V ′′
i+2 ∪ V ′′′′ 	= ∅ then |V | ≤ 16

by Lemma 25; therefore, we can assume that V ′′
i ∪ V ′′

i+2 ∪ V ′′′′ = ∅. By Lemma 15 (iii, (4)), we have

b 	∈ V ′′′
i−1 ∪ V ′′′

i+1. By Lemma 22 (iii) and Lemma 23, we can assume that each element in V̂ ∩ V ′′′
i

is adjacent to each element in V ′′′
i−2 ∪ V ′′′

i+2. Therefore, b ∈ V ′′′
i . If a′b ∈ E or b′a ∈ E then |V | ≤ 21

by Lemma 24. If a′b 	∈ E or b′a 	∈ E then either a′, a, vi+2, b, and b′ (if a′b′ 	∈ E) or b′, a′, a, vi, and vi+1

induce P5.

Thus, we assume that

{a, b} ∩
5⋃

i=1

V ′′′
i = ∅.

By Lemma 15 (iii, (3)), a 	∈ V ′′′′ and b 	∈ V ′′′′. Let a ∈ V ′′
i . Then b 	∈ V ′′

i−1 ∪ V ′′
i+1 by Lemma 15 (iii, (3));

i.e., b ∈ V ′′
i−2 ∪ V ′′

i+2. Without loss of generality, we can assume that b ∈ V ′′
i+2. Clearly, a′b 	∈ E and

b′a 	∈ E since otherwise a, b, vi−1, and vi+1 together with a′ or b′ induce P5. Consequently, a′ 	= b′. If
a′b′ 	∈ E then b′, b, vi, a, and a′ induce P5, and if a′b′ ∈ E then b, b′, a, a′, and vi+1 induce P5.

Thus, V̂ constitutes a separating clique in G; a contradiction to the fact that |V | ≥ 22.

Lemma 26 is proved.

The main result of this section is

Theorem 2. Problem WVC is solvable in time polynomial in the sum of the vertices
for {P5,K

+
2,3,W4}-free graphs.
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Proof. Owing to Lemma 1, we can consider Problem WVC only for atomic graphs of the class
Free({P5,K

+
2,3,W4}). By Lemma 14, each graph of this class either contains a induced C5 or has

7 vertices or is perfect. Reckoning with this and Lemmas 6 and 8, we can assume that we consider
the atomic graphs of class Free({P5,K

+
2,3,W4}) containing an induced C5.

Consider the graph G = (V,E) of this type. If S = ∅ then, by Lemma 20, either G is O3-free or
|V | ≤ 161. Consequently, to (G,w) we can apply an algorithm polynomial in the sum of the weights,
which exists by Lemmas 16 and 17. If S 	= ∅ then, by Lemma 26, |V | ≤ 21. Therefore, to (G,w) we can
apply an algorithm polynomial in the sum of the weights, which exists by Lemma 16. Thus, the assertion
holds.

Theorem 2 is proved.
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2. D. Král’, J. Kratochvíl, Z. Tuza, and G. Woeginger, “Complexity of Coloring Graphs without Forbidden

Induced Subgraphs,” in Graph-Theoretic Concepts in Computer Science: Proceedings of 27th Interna-
tional Workshop (Boltenhagen, Germany, June 14–16, 2001) (Springer, Heidelberg, 2001), pp. 254–262
[Lecture Notes in Computer Science, Vol. 2204].

3. V. V. Lozin and D. S. Malyshev, “Vertex Coloring of Graphs with Few Obstructions,” Discrete Appl. Math.
216, 273–280 (2017).

4. P. A. Golovach, M. Johnson, D. Paulusma, and J. Song, “A Survey on the Computational Complexity of
Coloring Graphs with Forbidden Subgraphs,” J. Graph Theory. 84, 331–363 (2017).

5. K. Cameron, S. Huang, I. Penev, and V. Sivaraman, “The Class of (P7, C4, C5)-Free Graphs: Decomposition,
Algorithms, and χ-Boundedness,” J. Graph Theory 93 (4), 503–552 (2019).

6. K. Cameron, M. da Silva, F. Huang, and K. Vuskovic, “Structure and Algorithms for (Cap, Even Hole)-Free
Graphs,” Discrete Math. 341, 463–473 (2018).
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