### Article

## The Generalized Carrier-Greenspan Transform for the shallow water system with arbitrary initial and boundary conditions

We put forward a solution to the initial boundary value (IBV) problem for the nonlinear

shallow water system in inclined channels of arbitrary cross section by means of

the generalized Carrier–Greenspan hodograph transform (Rybkin et al. in J Fluid

Mech, 748:416–432, 2014). Since the Carrier–Greenspan transform, while linearizing

the shallow water system, seriously entangles the IBV in the hodograph plane, all

previous solutions required some restrictive assumptions on the IBV conditions, e.g.,

zero initial velocity, smallness of boundary conditions. For arbitrary non-breaking

initial conditions in the physical space, we present an explicit formula for equivalent

IBV conditions in the hodograph plane, which can readily be treated by conventional

methods. Our procedure, which we call the method of data projection, is based on the

Taylor formula and allows us to reduce the transformed IBV data given on curves in

the hodograph plane to the equivalent data on lines. Our method works equally well

for any inclined bathymetry (not only plane beaches) and, moreover, is fully analytical

for U-shaped bays. Numerical simulations show that our method is very robust and

can be used to give express forecasting of tsunami wave inundation in narrow bays

and fjords.

Data from a field survey of the 2011 Tohoku-oki tsunami in the Sanriku area of Japan is used to plot the distribution function of runup heights along the coast. It is shown that the distribution function can be approximated by a theoretical log-normal curve. The characteristics of the distribution functions of the 2011 event are compared with data from two previous catastrophic tsunamis (1896 and 1933) that occurred in almost the same region. The number of observations during the last tsunami is very large, which provides an opportunity to revise the conception of the distribution of tsunami wave heights and the relationship between statistical characteristics and the number of observed runup heights suggested by Kajiura (1983) based on a small amount of data on previous tsunamis. The distribution function of the 2011 event demonstrates the sensitivity to the number of measurements (many of them cannot be considered independent measurements) and can be used to determine the characteristic scale of the coast, which corresponds to the statistical independence of observed wave heights.

In the present work the results of different scenario of the cliff of Cape Canaille hypothetic collapse (South of France) are presented. Three scenarios were considered: falling of one block, falling of several blocks in one time and debris flow avalanche. The analysis of the entire scenario was done.

Approaches to modeling a tsunami of meteoric origin are discussed. A brief overview of the asteroid and meteorite danger to the Earth is given. Formulas assessing the parameters of the tsunami caused by an asteroid entering the water are derived. The results of the numerical simulation of the effect of the angle of entry of the body into water on the characteristics of the resulting waves in the near field are given. The model based on the Navier–Stokes equations for multiphase flows with a free surface is used in calculations. The dimensions of perturbation are studied and the regularities of changes in the parameters of the source are discovered.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.