### Article

## Nonstationary double-deck structure of boundary layers in compressible flow problem inside a channel with small irregularities on the walls

A subsonic flow of a viscous compressible fluid in a two-dimensional channel with small periodic or localized irregularities on the walls for large Reynolds numbers is considered. A formal asymptotic solution with double-deck structure of the boundary layer is constructed. A nontrivial time hierarchy is discovered in the decks. An analysis of the scales of irregularities at which the double-deck structure exists is performed.

We study the existence conditions for a double-deck structure of a boundary layer in typical problems of incompressible fluid flow along surfaces with small irregularities (periodic or localized) for large Reynolds number. We obtain characteristic scales (a power of a small parameter included in a solution) which lead to the double-deck structure, and we obtain a formal asymptotic solution of a problem of a flow inside an axially-symmetric pipe and a two-dimensional channel with small periodic irregularities on the wall. We prove that a quasistationary solution of a Rayleigh-type equation (which describes the flow oscillation on the “upper deck” of the boundary layer with the double-deck structure, i.e. in the classical Prandtl boundary layer) exists and is stable. We obtain a formal asymptotic solution with the double-deck structure for the problem of fluid flow along a plate with small localized irregularities such as hump, step or small angle. We construct a numerical solution algorithm for all equations which we obtained and we show the results of their applications.

We consider a non-stationary problem of an incompressible viscous fluid flow along surfaces with small irregularities for large Reynolds number, which have a formal asymptotic solution with a double-deck structure of the boundary layer.

Depending on the scales of periodic irregularities in the problem under study, a solution arises which describes two (“double-deck”) or three (“triple-deck”) boundary layers on the plate. Mainly, we study the equations describing the velocity oscillations in the boundary layers arising because of periodic irregularities and show their command nature.

This volume contains the extended version of selected talks given at the international research workshop "Coping with Complexity: Model Reduction and Data Analysis", Ambleside, UK, August 31 – September 4, 2009. The book is deliberately broad in scope and aims at promoting new ideas and methodological perspectives. The topics of the chapters range from theoretical analysis of complex and multiscale mathematical models to applications in e.g., fluid dynamics and chemical kinetics.

We review the results about the accuracy of approximations for distributions of functionals of sums of independent random elements with values in a Hilbert space. Mainly we consider recent results for quadratic and almost quadratic forms motivated by asymptotic problems in mathematical statistics. Some of the results are optimal and could not be further improved without additional conditions.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.