### ?

## Базовые автоморфизмы картановых слоений, накрытых расслоениями

Известия высших учебных заведений. Поволжский регион. Физико-математические науки. 2021. Т. 1. № 1. С. 49-65.

The basic automorphism group of a Cartan foliation (M,F) is the quotient group of the automorphism group of (M, F ) by the normal subgroup, which preserves every leaf invariant. For Cartan foliations covered by fibrations, we find sufficient conditions for the existence of a structure of a finite-dimensional Lie group in their basic automorphism groups. Estimates of the dimension of these groups are obtained. For some class of Cartan foliations with integrable an Ehresmann connection, a method for finding of basic automorphism groups is specified.

Sheina K., / Cornell University. Series arXiv "math". 2020. No. 04348v1.

The basic automorphism group of a Cartan foliation (M, F) is the quotient group of the automorphism group of (M, F) by the normal subgroup, which preserves every leaf invariant. For Cartan foliations covered by fibrations, we find sufficient conditions for the existence of a structure of a finite-dimensional Lie group in their basic automorphism groups. Estimates ...

Added: December 9, 2020

Группы базовых автоморфизмов картановых слоений моделируемых на неэффективных картановых геометриях.

Zhukova N., Sheina K., Труды Математического центра им. Н.И. Лобачевского 2015 Т. 52 С. 73-74

Исследуются картановы слоения, то есть слоения допускающие трансверсальную картанову геометрию. Рассматривается общая ситуация, когда картанова геометрия может быть неэффективной. Найдено достаточное условие для того, чтобы полная группа базовых автоморфизмов картанова слоения со связностью Эресмана допускала единственную структуру конечномерной группы Ли в категории картановых слоений, где изоморфизмы сохраняют как слоение, так и трансверсальную геометрию. Получены некоторые ...

Added: October 14, 2015

Н.И. Жукова, Шеина К. И., Труды Математического центра им. Н.И. Лобачевского 2014 Т. 50 С. 74-76

We investigate Cartan foliations covered by fibrations. We obtain a sufficient condition for the full
basic automorphism group of a complete Cartan foliation covered by fibration to admit a
unique (finite-dimensional) Lie group structure in the category of
Cartan foliations. The explicit new formula for determining its basic automorphism
Lie group is given. Examples of computing the full basic ...

Added: November 12, 2014

Shirokov D., Advances in Applied Clifford Algebras 2012 Vol. 22 No. 1 P. 243-256

We present a new classification of Clifford algebra elements. Our classification is based on the notion of quaternion type. Using this classification we develop a method for analyzing commutators and anticommutators of Clifford algebra elements. This method allows us to find out and prove a number of new properties of Clifford algebra elements. ...

Added: June 16, 2015

Shirokov D., Advances in Applied Clifford Algebras 2010 Vol. 20 No. 2 P. 411-425

In this paper we present new formulas, which represent commutators and anticommutators of Clifford algebra elements as sums of elements of different ranks. Using these formulas we consider subalgebras of Lie algebras of pseudo-unitary groups. Our main techniques are Clifford algebras. We have found 12 types of subalgebras of Lie algebras of pseudo-unitary groups. ...

Added: June 16, 2015

Bazaikin Y., Galaev A., Zhukova N., Chaos 2020 Vol. 30 P. 1-9

Chaotic foliations generalize Devaney's concept of chaos for
dynamical systems. The property of a foliation to
be chaotic is transversal. The existence problem of chaos for a Cartan foliation
is reduced to the corresponding problem for its holonomy pseudogroup of
local automorphisms of a transversal manifold. Chaotic foliations with transversal Cartan ...

Added: October 6, 2020

K. I. Sheina, N. I. Zhukova, Lobachevskii Journal of Mathematics 2018 Vol. 39 No. 2 P. 271-280

For a complete Cartan foliation (M; F) we introduce
two algebraic invariants g0(M; F) and g1(M; F) which we call structure
Lie algebras. If the transverse Cartan geometry of (M; F) is eective
then g0(M; F) = g1(M; F). We prove that if g0(M; F) is zero then in
the category of Cartan foliations the group of all basic ...

Added: March 23, 2017

Shirokov D., Advances in Applied Clifford Algebras 2021 Vol. 31 Article 30

In this paper, we consider inner automorphisms that leave invariant fixed subspaces of real and complex Clifford algebras — subspaces of fixed grades and subspaces determined by the reversion and the grade involution. We present groups of elements that define such inner automorphisms and study their properties. Some of these Lie groups can be interpreted ...

Added: May 10, 2021

/ Cornell University. Series arXiv "math". 2015. No. 1410.1144.

We get sufficient conditions for the full basic automorphism group of a complete Cartan foliation to admit a unique (finite-dimensional) Lie group structure in the category of Cartan foliations. In particular, we obtain sufficient conditions for this group to be discrete. Emphasize that the transverse Cartan geometry may be noneffective. Some estimates of the dimension ...

Added: September 28, 2015

Zhukova N.I., K. I. Sheina, / Cornell University. Series math "arxiv.org". 2015. No. 1410.1144.

We get sufficient conditions for the full basic automorphism group of a complete
Cartan foliation to admit a unique (finite-dimensional) Lie group structure in the category
of Cartan foliations. In particular, we obtain sufficient conditions for this group
to be discrete. Emphasize that the transverse Cartan geometry may be noneffective.
Some estimates of the dimension of this group depending ...

Added: November 10, 2014

N. I. Zhukova, Journal of Mathematical Sciences 2016 Vol. 219 No. 1 P. 112-124

We consider a Cartan foliation (M,F) of an arbitrary codimension q admitting an
Ehresmann connection such that all leaves of (M,F) are embedded submanifolds of M.
We prove that for any foliation (M,F) there exists an open, not necessarily connected,
saturated, and everywhere dense subset M0 of M and a manifold L0 such that the induced
foliation (M0, FM0) ...

Added: October 21, 2016

Zhukova N., Chebochko N., Известия высших учебных заведений. Математика 2020 № 11 С. 87-92

The aim of this work is to describe the structure of complete Lorentzian foliations $(M, F)$ of codimension two
on $n$-dimensional closed manifolds. It is proved that $(M, F)$ is either Riemannian or has a constant
transversal curvature and its structure is described. For such foliations $(M, F)$, the criterion is obtained,
reducing the chaos problem in $(M, ...

Added: October 6, 2020

Nina. I. Zhukova, Galaev A., / Cornell University. Series math "arxiv.org". 2017.

The paper is focused on the existence problem of attractors for foliations. Since the existence of an attractor is a transversal property of the foliation, it is natural to consider foliations admitting transversal geometric structures. As transversal structures are chosen Cartan geometries due to their universality. The existence problem of an attractor on a complete ...

Added: March 23, 2017

В. Л. Попов, Доклады Российской академии наук. Математика, информатика, процессы управления (ранее - Доклады Академии Наук. Математика) 2021 Т. 500 № 1 С. 52-54

It is explored to which extent the group variety of an algebraic group determines its group structure. ...

Added: November 18, 2021

Vladimir L. Popov, / Cornell University. Series math "arxiv.org". 2021. No. 2105.12861.

Starting with exploration of the possibility to present the underlying variety of an affine algebraic group in the form of a product of some algebraic varieties, we then explore the naturally arising problem as to what extent the group variety of an algebraic group determines its group structure. ...

Added: May 28, 2021

Zhukova N. I., Mathematical notes 2013 Vol. 93 No. 5-6 P. 928-931

In this paper a unified method for studying foliations with transversal parabolic geometry of rank one is presented.
Ideas of Fraces' paper on parabolic geometry of rank one and of works of the author on conformal foliations
are developed. ...

Added: October 19, 2014

Н.И. Жукова, Mathematical Notes (Rusian Federation) 2013 Т. 93 № 6 С. 994-996

In this paper a unified method for studying foliations with transversal psrsbolic geometry of rank one is presented.
Ideas of Fraces' paper on parabolic geometry of rank one and of works of the author on conformal foliations
are developed. ...

Added: September 28, 2014

Zhukova N., Journal of Physics: Conference Series 2018 Vol. 990 No. 1 P. 1-15

A foliation that admits a Weyl structure arising from a pseudo-Riemannian metric of any signature as its transverse structure is called a pseudo-Riemannian Weyl foliation or (for short) a Weyl foliation. We investigate codimension q ≥ 2 Weyl foliations on (not necessarily compact) manifolds. Different interpretations of their holonomy groups are given. We prove a ...

Added: April 1, 2018

Dolgonosova A., Zhukova N., Журнал Средневолжского математического общества 2015 Т. 17 № 4 С. 14-23

We prove the equivalence of three different approaches to the definition of completeness of a foliation with transverse linear connection. It is shown that for the transverse ane foliations
(M, F) of codimension q, q > 1, each of the mentioned above conditions are equivalent to
fulllment of the following two conditions: 1) there exists an Ehresmann ...

Added: March 12, 2016

Popov V., Известия РАН. Серия математическая 2022 Т. 86 № 5 С. 73-96

We explore to what extent the group variety of a connected algebraic group or the group manifold of a real Lie group determines its group structure. ...

Added: June 9, 2022

Vladimir L. Popov, / Cornell University. Series math "arxiv.org". 2018. No. 1804.00323v1.

We prove that the family of all connected n-dimensional real Lie groups is uniformly Jordan for every n. This implies that all algebraic groups (not necessarily affine) over fields of cha\-racte\-ristic zero and some transformation groups of complex spaces and Riemannian manifods are Jordan. ...

Added: April 3, 2018

Zhukova N., Труды Московского физико-технического института 2017 Т. 9 № 4 С. 132-141

Complete transversely affine foliations are studied. The strong transversal equivalence of
complete affine foliations is investigated, which is a more refined notion than the transverse
equivalence of foliations in the sense of Molino. A global holonomy group of a complete
affine foliations is determined and it is proved that this group is the complete invariant
of the foliation relatively ...

Added: November 28, 2017

Zhukova N., Ufa Mathematical Journal 2019 Vol. 11 No. 3 P. 30-44

We study totally geodesic foliations (M, F) of arbitrary codimension q on n-dimensional pseudo-Riemannian manifolds, for which the induced metrics on leaves is nondegenerate.
We assume that the q-dimensional orthogonal distribution M to (M, F) is an
Ehresmann connection for this foliation. Since the usual graph G(F) is not Hausdorff
manifold in general, we study the graph GM(F) ...

Added: October 28, 2019

Kharchev S. M., Khoroshkin S. M., Advances in Mathematics 2020 Vol. 375 No. 107368 P. 1-56

We obtain certain Mellin-Barnes integrals which present Whittaker wave functions related to classical real split forms of simple complex Lie groups ...

Added: October 18, 2020