### Article

## Class of Stable Connectivity of Source-Sink Diffeomorphism on Two-Dimensional Sphere

We consider the class of gradient-like diffeomorphisms possessing an attractor and a repeller separated by a circle on a 2-sphere. For any diffeomorphism in this class we construct a stable arc connecting it with the source-sink system.

In the present paper, a solution to the 33rd Palis-Pugh problem for gradient-like diffeomorphisms of a two-dimensional sphere is obtained. It is precisely shown that with respect to the stable isotopic connectedness relation there exists countable many of equivalence classes of such systems.

We consider the class $G$ of gradient-like orientation preserving diffeomorphisms of the 2-sphere with saddles of negative orientation type. We show that the for every diffeomorphism $f\in G$ every saddle point is fixed. We show that there are exactly three equivalence classes (up to topological conjugacy) $G=G_1\cup G_2\cup G_3$ where a diffeomorphism $f_1\in G_1$ has exactly one saddle and three nodes (one fixed source and two periodic sinks); a diffeomorphism $f_2\in G_2$ has exactly two saddles and four nodes (two periodic sources and two periodic sinks) and a diffeomorphism $f_3\in G_3$ is topologically conjugate to a diffeomorphism $f_1^{-1}$. The main result is the proof that every diffeomorphism $f\in G$ can be connected to the ``source-sink'' diffeomorphism by a stable arc and this arc contains at most finitely many points of period-doubling bifurcations.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.