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1 Introduction

The notion of a stable arc connecting two structurally stable systems on a manifold was intro-

duced in [1]. Such an arc does not change qualitative properties under small perturbations. As

proved in [2], there exists a simple arc (containing only elementary bifurcations) between any

two Morse–Smale flows. By the results of [3], such a simple arc can be always replaced with

a stable arc. For Morse–Smale diffeomorphisms defined on manifolds of any dimension there

are examples of systems that cannot be connected by a stable arc. Respectively, the follow-

ing question naturally arises: find an invariant that uniquely determines the equivalence class

of a Morse–Smale diffeomorphism with respect to the connection relation by a stable arc (a

component of stable connection).

A circle is a unique closed manifold for which this problem is completely solved. As shown

in [4], for orientation-preserving rough transformations of a circle the component of stable con-

nection is determined by the Poincaré rotation number k/m, (k,m) = 1, while all orientation-

changing diffeomorphisms lie in the same component of stable connection.

For Morse–Smale diffeomorphisms on a two-dimensional sphere necessary conditions for the

existence of a connecting stable arc were found in [5], where sufficient conditions were not
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discussed. The conditions found in [5] imply that even on a two-dimensional sphere there are

infinitely many components of stable connection. To clarify this fact, we regard S
1 as the equator

of the sphere S2. Then the diffeomorphism of the circle with exactly two periodic orbits of period

m and rotation number k/m can be extended to a diffeomorphism Fk/m : S2 → S
2 possessing

two fixed sources at the north and south poles. Moreover, the diffeomorphisms Fk/m and Fk′/m′

for m = 2r · q and m′ = 2r
′ · q′, where r, r′ � 0 are integers and q �= q′ are natural numbers, are

not connected by a stable arc (cf. Figure 1 for the phase portraits of diffeomorphisms of the

2-spheres F1/2 and F1/3).

(a) (b)

Figure 1. Phase portraits of diffeomorphisms of 2-sphere (a) F1/2, (b) F1/3.

The simplest structurally stable two-dimensional diffeomorphism is presented by a source-

sink system on a two-dimensional sphere. All such systems are pairwise topologically conjugate,

but it is not trivial to prove that there exists a stable path between two source-sink systems [6]

(moreover, this assertion is false in the general case of source-sink systems on an n-dimensional

sphere [7]). By the results of [5], the stable connectivity class for a source-sink diffeomorphism

on a 2-sphere does not contain diffeomorphisms Fk/m with odd m > 1.

Figure 2. Phase portrait of diffeomorphism f ∈ G.

In this paper, we find sufficient conditions for a gradient-like diffeomorphism of a 2-sphere

to belong to a component of stable connection of a source-sink diffeomorphism. Namely, we

2



deal with orientation-preserving gradient-like diffeomorphisms f : S2 → S
2. We denote by Ω0,

Ω1, and Ω2 the sets of sinks, saddles, and sources of the diffeomorphism f respectively. Let

Σ ⊂ Ω1 be a subset (possibly, empty) of saddle orbits. With each Σ we can associate the dual

pair attractor–repeller AΣ, RΣ defined by

AΣ = Ω0 ∪W u
Σ, RΣ = Ω2 ∪W s

Ω1\Σ.

We say that a diffeomorphism f belongs to the class G if there exists a set Σ and a circle C ⊂
S
2 such that AΣ and RΣ belong to different connected components of the set S2 \C. We denote

by Af and Rf the attractor and repeller possessing the above properties for a diffeomorphism

f ∈ G (cf. Figure 2). We formulate the main result of the paper.

Theorem 1.1. Any diffeomorphism f ∈ G is connected with a source-sink diffeomorphism

by a stable arc.

2 Preliminaries

2.1. Morse–Smale diffeomorphisms. Let a diffeomorphism f :Mn →Mn be defined on

a smooth closed (compact, without boundary) n-manifold (n � 1) Mn with metric d.

A point x ∈ Mn is said to be wandering for f if there exists an open neighborhood Ux of

the point x such that fn(Ux) ∩ Ux = ∅ for all n ∈ N. Otherwise, the point x is referred to

as nonwandering. The set of nonwandering points for f is called the nonwandering set and is

denoted by Ωf .

For example, all limit points of a diffeomorphism are nonwandering. We recall that y ∈
Mn is an ω-limit point for x ∈ Mn if there exists a sequence tk → +∞, tk ∈ Z, such that

lim
tk→+∞ d(f tk(x), y) = 0. The set ω(x) of all ω-limit points for a point x is called the ω-limit

set. Replacing +∞ with −∞, we define the α-limit set α(x) of the point x. The set Lf =

cl(
⋃

x∈Mn

ω(x) ∪ α(x)) is called the limit set of the diffeomorphism f .

If the set Ωf is finite, then each point p ∈ Ωf is periodic. We denote by mp ∈ N the period

of a periodic point p. With any periodic point p we associate the stable and unstable manifolds

by

W s
p = {x ∈Mn : lim

k→+∞
d(fkmp(x), p) = 0},

W u
p = {x ∈Mn : lim

k→+∞
d(f−kmp(x), p) = 0}.

Stable and unstable manifolds are called invariant manifolds. We say that periodic orbits

O1, . . . ,Ok form a cycle if W s
Oi

∩W u
Oi+1

�= ∅ for i ∈ {1, . . . , k} and Ok+1 = O1.

A periodic point p ∈ Ωf is said to be hyperbolic if the Jacobi matrix

(
∂fmp

∂x

) ∣
∣
∣
p
has no

eigenevalues equal to 1 in absolute value. If all of the eigenvalues are less (greater) than 1 in

absolute value, then the point p is called a sink (source). Sink and source points are called

nodes. A hyperbolic periodic point that is not a node is called a saddle.

By the hyperbolic structure of periodic points p, the stable W u
p and unstable W s

p manifolds

are injective immersions of the space R
qp and R

n−qp , where qp is the number of eigenvalues of
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the Jacobi matrix that are greater than 1 in absolute value. The number νp equal to +1 (−1)

if the mapping fmp |Wu
p
preserves (change) the orientation of W u

p is called the orientation type

of the point p. The path connected component of the set W u
p \ p (W s

p \ p) is called the unstable

(stable) separatrix of the point p.

Figure 3. (a) source, (b) sink, (c) saddle.

A closed f -invariant set A ⊂ Mn is called an attractor of a discrete dynamical system f if

there is a compact neighborhood UA of A such that f(UA) ⊂ int UA and A =
⋂

k�0

fk(UA). The

neighborhood UA is called isolating. The repeller is the attractor for f−1. The complement to

the isolating neighborhood of an attractor is the isolating neighborhood of the dual repeller.

A diffeomorphism f :Mn →Mn is called a Morse–Smale diffeomorphism if

1) the nonwandering set Ωf consists of finitely many hyperbolic orbits,

2) the manifolds W s
p and W u

q transversally intersect for any nonwandering points p and q.

A Morse–Smale diffeomorphism is called a gradient-like diffeomorphism if the conditionW s
σ1
∩

W u
σ2

�= ∅ for different points σ1, σ2 ∈ Ωf implies dim W u
σ1
< dim W u

σ2
.

In a similar way, one can introduce a Morse–Smale flow on a manifold Mn which is called

gradient-like if there are no periodic trajectories.

In the case n = 2, the dynamics of gradient-like diffeomorphisms is closely connected with

the dynamics of periodic homeomorphisms. We recall that a homeomorphism ϕ : M2 → M2 is

said to be periodic of order m ∈ N if ϕm = id and ϕμ �= id for any natural number μ < m.

Proposition 2.1 (cf. [8] and [9, Theorem 3.3]). Any orientation-preserving gradient-like

diffeomorphism f : M2 → M2 is topologically conjugate to the composition of a periodic home-

omorphism with a gradient-like flow shifted by the time unit.

According to the classification [10], an orientation-preserving periodic homeomorphism of

order m of a two-dimensional sphere has periodic points of only two periods 1 and m; moreover,

the set of its fixed points is nonempty. Then Proposition 2.1 implies the following assertion.

Proposition 2.2. Any orientation-preserving gradient-like diffeomorphism of a 2-sphere has

periodic points only of two periods 1 and m (possibly, m = 1); moreover, the set of its fixed points

is nonempty.

Furthermore, for any orientation-preserving gradient-like diffeomorphism f : M2 → M2 the

following assertion holds.

Proposition 2.3 (cf. [9, Lemmas 3.1 and 3.3]). Assume that f : M2 → M2 is an

orientation-preserving gradient-like diffeomorphism and mf is the least natural number such

that Ωf
mf consists of fixed points with positive type orientation. Then the period of any saddle

separatrix of the diffeomorphism f is equal to mf .
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Summarizing the results of Propositions 2.2 and 2.3, we obtain the following fact about the

structure of periodic data of gradient-like diffeomorphisms of a 2-sphere.

Proposition 2.4. For any orientation-preserving gradient-like diffeomorphism of a 2-sphere

the following assertions hold:

1) mf = m,

2) any saddle point with negative orientation type is a fixed point,

3) any saddle point with positive orientation type has period m.

2.2. Stable arcs in the space of diffeomorphisms. We consider a one-parameter family

of diffeomorphisms (an arc) ϕt : M
n → Mn, t ∈ [0, 1]. Denote by Q the set of arcs {ϕt} that

start and terminate at Morse–Smale diffeomorphisms and possess the following properties:

1) ϕt has the finite limit set for all t ∈ [0, 1],

2) {ϕt} contains a finite set of bifurcational diffeomorphisms b1, . . . , bm ∈ (0, 1).

By [11], an arc {ϕt} is said to be stable if it is an interior point of the equivalence class

with respect to the following relation: arcs {ϕt}, {ϕ′
t} ∈ Q are conjugate if there exist home-

omorphisms h : [0, 1] → [0, 1] and Ht : Mn → Mn such that h(bi) = b′i, i ∈ {1, . . . ,m},
Htϕt = ϕ′

h(t)Ht, t ∈ [0, 1], and Ht continuously depends on t.

Figure 4. Arc in the set Q.

It is also established in [11] that an arc {ϕt} ∈ Q is stable if and only if it possesses the

following properties:

1) the diffeomorphism ϕbi , i ∈ {1, . . . ,m}, has no cycles and possesses exactly one nonhy-

perbolic periodic orbit (namely, a flip or a noncritical saddle–node); moreover, the arc unfolds

generically through the bifurcational value,

2) the stable and unstable manifolds of an periodic point of the diffeomorphism ϕt, t ∈ [0, 1],

transversally intersect (cf. Figure 4).

Figure 5. Saddle–node bifurcation.

We say that an arc {ϕt} ∈ Q unfolds generically through a saddle-node bifurcation ϕbi (cf.

Figures 5 and 6) if, in some neighborhood of the nonhyperbolic point (p, bi), the arc ϕt is

conjugate to the arc
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ϕ̃
˜t(x1, x2, . . . , x1+nu , x2+nu , . . . , xn) =

(
x1 +

1

2
x21 + t̃,±2x2, . . . ,±2x1+nu ,

±x2+nu

2
, . . . ,

±xn
2

)
,

where (x1, . . . , xn) ∈ R
n, |xi| < 1/2, |t̃| < 1/10.

Figure 6. Graph of the mapping of the first coordinate of saddle-node bifurcation.

Figure 7. Period doubling bifurcation (flip bifurcation).

Figure 8. Graph of the mapping of the first coordinate and the squared mapping for

period doubling bifurcation (flip bifurcation).
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We say that an arc {ϕt} ∈ Q unfolds generically through a period doubling bifurcation (a

flip bifurcation) ϕbi (cf. Figures 7 and 8) if, in some neighborhood of the nonhyperbolic point

(p, bi), the arc ϕt is conjugate to the arc

ϕ̃
˜t(x1, x2, . . . , x1+nu , x2+nu , . . . , xn) =

(
−x1(1± t̃)+x31,±2x2, . . . ,±2x1+nu ,

±x2+nu

2
, . . . ,

±xn
2

)
,

where (x1, . . . , xn) ∈ R
n, |xi| < 1/2, |t̃| < 1/10.

3 Dynamics of Diffeomorphisms of Class G

Lemma 3.1. For any diffeomorphism f ∈ G the attractor Af either consists of a single sink

point or is a connected one-dimensional complex without cycles.

Proof. We denote by D the connected component of the set S
2 \ C containing Af . Since

Af is an attractor and the disk D lies in its basin of attraction, there exists a natural number

l such that f l(cl D) ⊂ int D. Then Af =
⋂

k�0

fkl(cl D), which implies that the attractor Af is

connected (cf., for example, [9, Proposition 10.1]). We show that Af contains no cycles.

Assume the contrary. Let Af contain a cycle formed by the closures of unstable manifolds

of saddle points σ1, . . . , σr. Then the closed curve R =
r⋃

i=1
cl W u

i bounds the disk d ⊂ D, which

means that for each saddle σi one of its stable separatrices lies in d. Consequently, the disk d

also contains the closure of this separatrix. Thus, Rf ∩d �= ∅, which contradicts the assumptions

on G. Thus, Af does not contain cycles.

Lemma 3.2. If the attractor Af of a diffeomorphism f ∈ G is different from a sink, then

exactly one of the following assertions holds:

1) Af = cl W u
σ , where qσ = mσ = 1, νσ = −1,

2) there exist points σ, ω ∈ Af such that mσ = mω, qω = 0, qσ = νσ = 1, ω ∈ cl W u
σ and

W s
ω ∩Af consists of exactly one unstable separatrix of the saddle σ and the sink ω.

Figure 9. Illustration for Lemma 3.2.

Proof. Assume that the attractor Af of a diffeomorphism f ∈ G is not a sink. By Lemma

3.1, in this case, the one-dimensional complex Af is a tree and, consequently, has the so-called
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pendant vertex, i.e., there exist points σ, ω ∈ Af such that qω = 0, qσ = 1, ω ∈ cl W u
σ , and

W s
ω ∩ Af consists of exactly one unstable separatrix of the saddle σ and the sink ω. Two cases

are possible: 1) νσ = −1 and 2) νσ = 1 (cf. Figure 9).

Case 1: νσ = −1. By Proposition 2.4, mσ = 1 and the period of the separatrix of the saddle

σ is equal to 2. Since Af has no cycles, we have ω �= f(ω) and, consequently, mω = 2. Then

W s
f(ω) ∩ Af consists of exactly one unstable separatrix of the saddle σ and the sink f(ω). This

implies Af = ω ∪W u
σ ∪ f(ω).

Case 2: νσ = 1. By Proposition 2.4, mσ = m, the period of the separatrix of the saddle σ

is equal to m, and for the sink ω there are two possibilities: 2a) mω = m and 2b) mω = 1. In

case 2a), we have the required assertion of the lemma. In case 2b), all m unstable separatrices

of the saddle σ lie in the basin of the sink ω. Since W s
ω ∩Af consists of one unstable separatrix

of the saddle σ and the sink ω, we have m = 1, and the required assertion follows.

4 Construction of Stable Arc

We divide the class G into paiwise disjoint subsets Gλ,μ, where λ,∈ N (μ ∈ N) is the number

of sinks (sources) in the attractor Af (the repeller Rf ). We note that the class G1,1 consists

of source-sink diffeomorphisms. To prove Theorem 1.1, it suffices to construct a stable arc

Γfλ,μ,fλ−1,μ
, λ > 1, connected the diffeomorphisms fλ,μ ∈ Gλ,μ and fλ−1,μ ∈ Gλ−1,μ (which is

done in Lemma 4.2 below). Indeed, in this case, the stable arc Γfλ,μ,f1,μ = Γf2,μ,f1,μ ∗ · · · ∗
Γfλ,μ,fλ−1,μ

connects the diffeomorphisms fλ,μ and f1,μ. If c1 and c2 are paths in the topological

space X such that c1(1) = c2(0), then we introduce the product of paths c1 and c2 as the path

c1 ∗ c2 defined by

(c1 ∗ c2)(t) =
{
c1(2t), 0 � t � 1/2,

c2(2t− 1), 1/2 � t � 1.
(4.1)

Since the diffeomorphism f−1
1,μ belongs to Gμ,1, the stable arc Γf−1

1,μ,f
−1
1,1

= Γf−1
2,μ,f

−1
1,μ

∗ · · · ∗
Γf−1

1,μ,f
−1
1,μ−1

= {γt} connects the diffeomorphisms f−1
1,μ and f−1

1,1 . Then the stable arc Γ̃f1,μ,f1,1 =

{γ−1
t } connects the diffeomorphisms f1,μ and f1,1. Thus, the required arc connecting the diffeo-

morphism fλ,μ ∈ Gλ,μ with some source-sink diffeomorphism has the form Γ̃f1,μ,f1,1 ∗ Γfλ,μ,f1,μ

(cf. Figure 10).

Figure 10. Scheme for constructing the arc.

It is possible to reduce the number of saddle points on the attractor Af by constructing an
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arc unfolds generically through a saddle–node bifurcation or a flip. To realize such a scenario,

it is necessary to reduce the merging objects to the canonical form. Namely, in Lemma 4.2, we

present the dynamics in a neighborhood of a sink to the canonical contraction and, in Lemma

4.1, we prove that the unstable saddle separatrix in the basin of the canonical sink can be put

on a smooth arc. The following classical result is an important tool of all our constructions.

Proposition 4.1 (cf. [12, Theorem 5.8]). Assume that Y is a smooth manifold without

boundary, X is a smooth compact submanifold of Y , and {ft : X → Y, t ∈ [0, 1]} is a smooth

isotopy such that f0 is the mapping of inclusion of X to Y . Then for any compact set A ⊂ Y

containing supp {ft} there exists a smooth isotopy {gt ∈ Diff (Y ), t ∈ [0, 1]}, such that g0 = id,

gt|X = ft|X for any t ∈ [0, 1] and supp {gt} lies in A.

By supp{ft} of an isotopy {ft} we mean the closure of the set {x ∈ X : ft(x) �= f0(x) for some

t ∈ [0, 1]}.

Proposition 4.2 (cf. [13, Lemma 1.1]). Assume that θ is a finite set of points of a manifold

Mn, ϕ :Mn →Mn is a diffeomorphism, and

T =
⋃

x∈θ
TMn

x , T ′ =
⋃

x∈θ
TMn

ϕ(x).

Then there exists a neighborhood U(θ) ⊃ θ and a number ε > 0 such that for any isomorphism

G : T → T ′ such that ‖G − Dϕ‖ < ε/10 there exists a diffeomorphism ψ : Mn → Mn that is

ε-close to ϕ in the C1 topology and such that Dψ = G on T and ψ = f outside U(θ).

Since, between any hyperbolic automorphisms of the same index (the number of eigenvalues

greater than 1 in modulus), there exists a path of hyperbolic automorphisms, Lemma 4.2 admits

the following generalization.

Proposition 4.3. Let a diffeomorphism ϕ0 :M
n →Mn have a hyperbolic point r0 of period

m0, and let (U0, h) be a local chart of the manifold Mn such that r0 ∈ U0, h(r0) = O. Then

for any hyperbolic automorphism G possessing the same index as the automorphism (Dϕm0
0 )r0

there exist neighborhoods U1 and U2 of the point r0, U2 ⊂ U1 ⊂ U0, and an arc ϕt :M
n →Mn,

t ∈ [0, 1], without bifurcation such that

1) the diffeomorphism ϕt, t ∈ [0, 1], coincides with the diffeomorphism ϕ0 outside
m−1⋃

k=0

ϕk
0(U1),

and
m−1⋃

k=0

ϕk
0(r0) is the hyperbolic orbit of period m0 for every ϕt,

2) the diffeomorphism hϕm
1 h

−1 coincides with the diffeomorphism G on the set h(U2).

Now, we describe the construction in detail. We denote by O(0, 0) the origin in the plane

R
2. For any r > 0 we set Br = {(x, y) ∈ R

2 : x2 + y2 < r2}. We denote by g : R2 → R
2 the

diffeomorphism given by g(x, y) = (x/2, y/2).

Lemma 4.1. Assume that a diffeomorphism ϕ0 : M2 → M2 has a hyperbolic sink ω0 and

a hyperbolic saddle σ0 such that the unstable separatrix γϕ0 of the saddle σ0 lies in the basin

of the sink W s
ω0

and has the same period m as the sink ω0. Let (U0, ψ0) be a local chart of the

manifold M2 such that ω0 ∈ U0, ψ0(ω0) = O, and ϕm
0 (U0) ⊂ U0. Then there exist neighborhoods
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V1 and V2 of the point ω0 such that V2 ⊂ V1 ⊂ U0 and an arc ϕt :M
2 →M2, t ∈ [0, 1], without

bifurcations such that

(1) the diffeomorphism ϕt, t ∈ [0, 1], coincides with the diffeomorphism ϕ0 outside
m−1⋃

k=0

ϕk
0(V1),

and
m−1⋃

k=0

ϕk
0(ω0) is the hyperbolic sink orbit of period m for all ϕt,

(2) ψ0(γϕ1 ∩ V2) ⊂ OX1, where γϕ1 is an unstable separatrix of the saddle σ0 relative to the

diffeomorphism ϕ1 (cf. Figure 11).

Figure 11. Rectification of separatrix.

Proof. Let ϕ0 = ϕm
0 , ϕ0 = ψ0ϕ0ψ

−1
0 : R

2 → R
2. By Proposition 4.3, without loss of

generality we can assume that ϕ0 = g on the disk B2r0 for some r0 > 0. We set K0 = B2r0 \Br0

and γϕ0
= ψ0(γϕ0).

We denote by Eg the set of contractions ϕ : R2 → R
2 coinciding with ϕ0 outside B2r0 and

with g on Brϕ , where rϕ � 2r0. For any ϕ ∈ Eg we set γϕ =
⋃

k∈Z
ϕk(γϕ0

∩K0). By construction,

the ϕ-invariant curve γϕ coincides with the ϕ0-invariant curve γϕ0
outside Br0 . Then it suffices

to construct an arc from the contractions ϕt : R
2 → R

2, t ∈ [0, 1], such that

1) the diffeomorphism ϕt, t ∈ [0, 1], coincides with the diffeomorphism ϕ0 outside Br0 ,

2) (γϕ1
∩Brϕ1

) ⊂ OX1.

Then the arc ϕt : M2 → M2 is obtained from the arc ϕt as follows. Assume that V1 =

h−1(Br0), V2 = h−1(Brϕ1
), and ϕt = h−1ϕth on V1. Then ϕt, t ∈ [0, 1], coincides with ϕ0

outside
m−1⋃

k=0

ϕk
0(V1), ϕt(z) = ϕ0(z) for z ∈ ϕk

0(V2), k ∈ {0, . . . ,m− 2}, and ϕt(z) = ϕt(ϕ
1−m
0 (z))

for z ∈ ϕm−1
0 (V2).

To construct the arc ϕt, for an arbitrary diffeomorphism ϕ ∈ Eg we introduce the notation.

We represent the two-dimensional torus T2 as the space of orbits of the action of the diffeomor-

phism g on R
2 \ O and denote by p : R2 \ O → T

2 the natural projection. We fix generators

â = p(OX1) and b̂ = p(S1) on T
2. We set Kϕ = Brϕ \ Brϕ/2 and γ̂ϕ = p(γϕ ∩Kϕ). Then the

curve γ̂ϕ is a node on the torus T2 admitting the decomposition 〈1,−nϕ〉, nϕ ∈ Z, in the basis

â, b̂ (cf., for example, [9]).

The arc ϕt is the smooth product of arcs ηt and ζt, where
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(I) the arc ηt, t ∈ [0, 1], consists of contractions coinciding with the diffeomorphism ϕ0

outside Br0 and connects the diffeomorphism η0 = ϕ0 with some diffeomorphism η1 ∈ Eg such

that the knot γ̂η1 admits the decomposition 〈1, 0〉 in the basis â, b̂,

(II) the arc ζt ∈ Eg, t ∈ [0, 1], connects the diffeormorphism ζ0 = η1 with a diffeomorphism

ζ1 such that γ̂ζ1 = â.

Figure 12. Illustration for Lemma 4.1 (1).

Figure 13. Illustration for Lemma 4.1 (2).

(I) If nϕ = 0, then we set ηt = ϕ0 for all t ∈ [0, 1]. Otherwise, we define the diffeomorphism

θt : R
2 → R

2, t ∈ [0, 1], such that θt(O) = O and

θt(ρe
iϕ) =

⎧
⎪⎪⎨

⎪⎪⎩

ρeiϕ, ρ > r0,

ρei(ϕ+4nϕπt(1−ρ/r0)), r0/2 � ρ � r0,

ρei(ϕ+2nϕπt), ρ < r0/2.

Then ηt = θtϕ0 : R
2 → R

2 is the desired arc (cf. Figure 12).

(II) By construction, η1 ∈ Eg and the node γ̂η1 admits the decomposition 〈1, 0〉 in the basis â,

b̂. There exists a diffeomorphism ĥ : T2 → T
2 that is smoothly isotopic to the identity and such

that ĥ(γ̂η1) = â. For r > 0 we setKr = Br\Br/2. We choose an open covering D = {D1, . . . , Dq}
of the torus T2 such that the connected component Di of the set p

−1(Di) is a subset of Kri with
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some ri < ri−1/2 and r1 � r0/2. By [14], there exist diffeomorphisms ŵ1, . . . , ŵq : T
2 → T

2 that

are smoothly isotopic to the identity and possess the following properties:

(i) for every i ∈ {1, . . . , q} there exists a smooth isotopy {ŵi,t} that is equal to the identity

outside Di and connects the identity with ŵi,

(ii) ĥ = ŵ1 . . . ŵq.

Let wi,t : R
2 → R

2 be a diffeomorphism coinciding with (p|Kri
)−1ŵi,tp onKri and the identity

outside Kri (cf. Figure 13). Then the desired arc is defined by ζt = w1,t . . . wq,t. The lemma is

proved.

Lemma 4.2. For any diffeomorphisms fλ,μ ∈ Gλ,μ, λ > 1, fλ−1,μ ∈ Gλ−1,μ there exists a

connecting stable arc Hfλ,μ,fλ−1,μ,t.

Proof. Let f = fλ,μ. By Lemma 3.2, there exist points σ, ω ∈ Af such that qω = 0, qσ = 1,

ω ∈ cl W u
σ , and the intersection W s

ω ∩ Af consists of exactly one unstable separatrix γ of the

saddle σ and the sink ω; moreover, the period of this separatrix is equal to the sink period m.

By Proposition 4.3 and Lemma 4.1, we can assume that there exists a local chart (U,ψ) of the

manifold S
2 such that ω ∈ U , ψ(ω) = O, fm(U) ⊂ U , and ψ(γ ∩ U) ⊂ OX1. By Lemma 3.2,

for the diffeomorphism f two cases are possible: 1) νσ = −1 and 2) νσ = 1. We construct the

required arc separately for each case.

Case 1: νσ = −1. In this case, Af =W u
σ ∪ω∪f(ω) and m = 2. We set l =W u

σ ∪ψ−1(OX1)∪
f(ψ−1(OX1)). Then l is a smooth curve containing Af and such that the points ω, f(ω) are

interior; moreover, f(l) ⊂ l. We set Π1 = {(x1, x2) ∈ R
2 : |xi| < 1/2}. On [−1/2; 1/2] ⊂ OX1,

we introduce the family of diffeomorphisms ϕt : [−1/2, 1/2] → R
2 by the formula

ϕt(x1) =
(
− x1

(
1 +

1

10
(1− 2t)

)
+ x31

)
.

We define the diffeomorphism ϕ̃t : Π̃1 → R
2 by the formula ϕ̃t(x1, x2) = (ϕt(x1),−x2/2, ). By

construction, the diffeomorphism ϕ̃0 has three periodic points of the period; namely, two sinks

P1(−1/
√
10, 0), P2(1/

√
10, 0) of period 2 and the fixed source point P3(0, 0). For ε > 0, δ > 0

we set

Jε =
[
− 1√

10
− ε,

1√
10

+ ε
]
⊂ OX1,

Vε,δ =
{
(x1, x2) ∈ R

2 : |x1| < 1/
√
10 + ε, |x2| < δ

}
.

We choose a neighborhood Π1 of the arc Af and a diffeomorphism β : Π1 → Π̃1 such that

β(ω) = P1, β(f(ω)) = P2, β(σ) = P3, and β(l ∩ Π1) = Ox1 ∩ Π̃1. Then, in some neighborhood

Vε1,δ1 , the diffeomorphism f̃ = βfβ−1 is well defined. By Proposition 4.3, we can assume that,

in the neighborhoods

VP1 = {(x1, x2) ∈ R
2 : |x1 + 1/

√
10| < ε1, |x2| < δ1},

VP2 = {(x1, x2) ∈ R
2 : |x1 − 1/

√
10| < ε1, |x2| < δ1},

VP3 = {(x1, x2) ∈ R
2 : |xi| < δ1}

of the points P1, P2, P3, the diffeomorphism f̃ coincides with (Dϕ̃0)P1 , (Dϕ̃0)P2 , (Dϕ̃0)P3

respectively. We denote by ϕ the restriction of f̃ onto Jε1 . On the cylinder Vε1,δ1 , we define the

12



diffeomorphism ϕ̃ by the formula ϕ̃(x1, x2) = (ϕ(x1),−x2/2). For δ > 0 we define the bump

function ρδ(r), r � 0, equal to 1 for r ∈ [0, δ] and 0 for r � 2δ. For δ2 = δ1/2 we define the

family of diffeomorphisms ãt, t ∈ [0, 1], on the cylinder Vε1,δ1 by the formula

ãt(x1, x2) = tρδ2(|x2|)ϕ̃(x1, x2) + (1− tρδ2(|x2|))f̃(x1, x2).
By construction, ãt, t ∈ [0, 1], coincides with f̃ on ∂Vε1,δ1 , ã0 = f̃ on Vε1,δ1 and ã1 = ϕ̃ on Vε1,δ2 .

Since the diffeomorphisms f̃ and ϕ̃ coincide on the segment Jε1 and rectangles VP1 , VP2 , VP3 , we

can assume without loss of generality that δ2 is chosen in such a way that the diffeomorphism

ãt has no nonwandering points different from P1, P2, P3.

For ε2 = ε1/4 and t ∈ [0, 1] we set

vt(x1) = ρε2(|x1|)ϕt(x1) + (1− ρε2(|x1|))ϕ(x1), x1 ∈ Jε1 .

By construction, the diffeomorphism vt coincides with ϕt on Jε2 and ϕ on Jε1 \J2ε2 . For t ∈ [0, 1]

we set νt(x1) = tv0(x1) + (1 − t)ϕ(x1). By construction, ν0 coincides with ϕ and ν1 coincides

with v0. We set wt = νt ∗ vt and w̃t(x1, x2) = (wt(x1),−x2/2) for (x1, x2) ∈ Vε1,δ1 .

For δ3 = δ2/2 we define the family of diffeomorphisms b̃t, t ∈ [0, 1], on the cylinder Vε1,δ1 by

the formula

b̃t(x1, x2) = ρδ3(|x2|)w̃t(x1, x2) + (1− ρδ3(|x2|))ã1(x1, x2).
By construction, b̃t, t ∈ [0, 1], coincides with f̃ on ∂Vε1,δ1 , b̃0 = ã1 on Vε1,δ1 , b̃t = w̃t on Vε1,δ3 ,

and b̃1 = ṽ1 on Vε1,δ3 .

We set c̃t = ãt∗b̃t and U2 = β−1(Vε1,δ1). Then the desired arc Γfμ,fμ−1 coincides with f outside
m−1⋃

k=0

fk(U2), ft(z) = f(z) for z ∈ fk(U2), k ∈ {0, . . . ,m − 2}, and ft(z) = β−1(c̃t(β(f
1−m(z))))

for z ∈ fm−1(U2).

Case 2: νσ = 1. In this case, the saddle σ and sink ω have the same period m. We set

l = W u
σ ∪ ψ−1(OX1). Then l is a smooth curve containing γ such that ω and σ are interior

points. We set Π1 = {(x1, x2) ∈ R
2 : |xi| < 1/2}. On [−1/2; 1/2] ⊂ OX1, we define the family

of diffeomorphisms ϕt : [−1/2, 1/2] → R
2 by the formula

ϕt(x1) = x1 +
x21
2

+
1

10
(2t− 1).

We define the diffeomorphism ϕ̃t : Π̃1 → R
2 by the formula ϕ̃t(x1, x2) = (ϕt(x1), x2/2). By con-

struction, the diffeomorphism ϕ̃0 has the sink point P1(−1/
√
5, 0) and saddle point P2(1/

√
5, 0).

For ε > 0, δ > 0 we set Iε = [−1/
√
5− ε, 1/

√
5 + ε] ⊂ OX1 and

Vε,δ = {(x1, x2) ∈ R
2 : |x1| < 1/

√
5 + ε, |x2| < δ}.

We choose a neighborhood Π1 of the arc γ and a diffeomorphism β : Π1 → Π̃1 such that

β(ω) = P1, β(σ) = P2 and β(l ∩ Π1) = Ox1 ∩ Π̃1. Then, in some neighborhood Vε1,δ1 , we have

a well-defined diffeomorphism f̃ = βfmβ−1. By Proposition 4.3, we can assume that, in the

neighborhood

VP1 = {(x1, x2) ∈ R
2 : |x1 + 1/

√
5| < ε1, |x2| < δ1},

VP2 = {(x1, x2) ∈ R
2 : |x1 − 1/

√
5| < ε1, |x2| < δ1}
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of the points P1 and P2, the diffeomorphism f̃ coincides with (Dϕ̃0)P1 and (Dϕ̃0)P2 respectively.

We denote by ϕ the restriction of f̃ on Iε1 . On the cylinder Vε1,δ1 , we define the diffeomorphism

ϕ̃ by ϕ̃(x1, x2) = (ϕ(x1), x2/2). For δ > 0 we introduce the bump function ρδ(r), r � 0, equal

to 1 for r ∈ [0, δ] and 0 for r � 2δ. For δ2 = δ1/2 we define the family of diffeomorphisms ãt,

t ∈ [0, 1], on the cylinder Vε1,δ1 by the formula

ãt(x1, x2) = tρδ2(|x2|)ϕ̃(x1, x2) + (1− tρδ2(|x2|))f̃(x1, x2).

By construction, ãt, t ∈ [0, 1], coincides with f̃ on ∂Vε1,δ1 , ã0 = f̃ on Vε1,δ1 and ã1 = ϕ̃ on

Vε1,δ2 . Since the diffeomorphisms f̃ and ϕ̃ coincide on Iε1 and rectangles VP1 , VP2 , without loss

of generality we can assume that δ2 is chosen in such a way that the diffeomorphism ãt has no

nonwandering points different from P1 and P2.

For ε2 = ε1/4 and t ∈ [0, 1] we set

vt(x1) = ρε2(|x1|)ϕt(x1) + (1− ρε2(|x1|))ϕ(x1), x1 ∈ Iε1 .

By construction, the diffeomorphism vt coincides with ϕt on Iε2 and ϕ on Iε1 \I2ε2 . For t ∈ [0, 1]

we set νt(x1) = tv0(x1) + (1 − t)ϕ(x1). By construction, ν0 coincides with ϕ and ν1 coincides

with v0. We set wt = νt ∗ vt and w̃t(x1, x2) = (wt(x1), x2/2) for (x1, x2) ∈ Vε1,δ1 .

For δ3 = δ2/2 we define the family of diffeomorphisms b̃t, t ∈ [0, 1], on the cylinder Vε1,δ1 by

the formula

b̃t(x1, x2) = ρδ3(|x2|)w̃t(x1, x2) + (1− ρδ3(|x2|))ã1(x1, x2).
By construction, b̃t, t ∈ [0, 1], coincides with f̃ on ∂Vε1,δ1 , b̃0 = ã1 on Vε1,δ1 , b̃t = w̃t on Vε1,δ3
and b̃1 = ṽ1 on Vε1,δ3 .

We set c̃t = ãt ∗ b̃t and U2 = β−1(Vε1,δ1). Then the desired arc Γfμ,fμ−1 coincides with

f outside the set
m−1⋃

k=0

fk(U2), ft(z) = f(z) for z ∈ fk(U2), k ∈ {0, . . . ,m − 2} and ft(z) =

β−1(c̃t(β(f
1−m(z)))) for z ∈ fm−1(U2).
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