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1 Introduction

The notion of a stable arc connecting two structurally stable systems on a manifold was intro-
duced in [1]. Such an arc does not change qualitative properties under small perturbations. As
proved in [2], there exists a simple arc (containing only elementary bifurcations) between any
two Morse-Smale flows. By the results of [3], such a simple arc can be always replaced with
a stable arc. For Morse—Smale diffeomorphisms defined on manifolds of any dimension there
are examples of systems that cannot be connected by a stable arc. Respectively, the follow-
ing question naturally arises: find an invariant that uniquely determines the equivalence class
of a Morse-Smale diffeomorphism with respect to the connection relation by a stable arc (a
component of stable connection).

A circle is a unique closed manifold for which this problem is completely solved. As shown
in [4], for orientation-preserving rough transformations of a circle the component of stable con-
nection is determined by the Poincaré rotation number k/m, (k,m) = 1, while all orientation-
changing diffeomorphisms lie in the same component of stable connection.

For Morse—Smale diffeomorphisms on a two-dimensional sphere necessary conditions for the
existence of a connecting stable arc were found in [5], where sufficient conditions were not
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discussed. The conditions found in [5] imply that even on a two-dimensional sphere there are
infinitely many components of stable connection. To clarify this fact, we regard S! as the equator
of the sphere S?. Then the diffeomorphism of the circle with exactly two periodic orbits of period
m and rotation number k/m can be extended to a diffeomorphism Fj,, : S? — S? possessing
two fixed sources at the north and south poles. Moreover, the diffeomorphisms Fy, /,,, and F/ /s
for m =27 - g and m’ = 2" - ¢/, where r,7’ > 0 are integers and q # ¢’ are natural numbers, are
not connected by a stable arc (cf. Figure 1 for the phase portraits of diffeomorphisms of the
2-spheres F/2 and F/3).

(a)

Figure 1. Phase portraits of diffeomorphisms of 2-sphere (a) F /o, (b) F/3.

The simplest structurally stable two-dimensional diffeomorphism is presented by a source-
sink system on a two-dimensional sphere. All such systems are pairwise topologically conjugate,
but it is not trivial to prove that there exists a stable path between two source-sink systems [6]
(moreover, this assertion is false in the general case of source-sink systems on an n-dimensional
sphere [7]). By the results of [5], the stable connectivity class for a source-sink diffeomorphism
on a 2-sphere does not contain diffeomorphisms Fj,,,, with odd m > 1.

Figure 2. Phase portrait of diffeomorphism f € G.

In this paper, we find sufficient conditions for a gradient-like diffeomorphism of a 2-sphere
to belong to a component of stable connection of a source-sink diffeomorphism. Namely, we



deal with orientation-preserving gradient-like diffeomorphisms f : S? — S2. We denote by Q°,
0! and Q? the sets of sinks, saddles, and sources of the diffeomorphism f respectively. Let
¥ C Q! be a subset (possibly, empty) of saddle orbits. With each ¥ we can associate the dual
pair attractor-repeller Ay, Ry, defined by

As = QPUWE, Ry =2 UWgi .

We say that a diffeomorphism f belongs to the class G if there exists a set ¥ and a circle C' C
S? such that Ay, and Ry, belong to different connected components of the set S2\ C. We denote
by Ay and R the attractor and repeller possessing the above properties for a diffeomorphism
f € G (cf. Figure 2). We formulate the main result of the paper.

Theorem 1.1. Any diffeomorphism f € G is connected with a source-sink diffeomorphism
by a stable arc.

2 Preliminaries

2.1. Morse—Smale diffeomorphisms. Let a diffeomorphism f: M™ — M™ be defined on
a smooth closed (compact, without boundary) n-manifold (n > 1) M"™ with metric d.

A point x € M™ is said to be wandering for f if there exists an open neighborhood U, of
the point z such that f*(U,) N U, = @ for all n € N. Otherwise, the point z is referred to
as nonwandering. The set of nonwandering points for f is called the nonwandering set and is
denoted by ;.

For example, all limit points of a diffeomorphism are nonwandering. We recall that y €
M™ is an w-limit point for x € M™ if there exists a sequence t; — 400, t; € Z, such that
lim d(f%(x),y) = 0. The set w(x) of all w-limit points for a point x is called the w-limit

t—4o00

set. Replacing +oo with —oo, we define the a-limit set a(x) of the point x. The set Ly =
cd( U w(z)Ua(x)) is called the limit set of the diffeomorphism f.

zeM™

If the set €1y is finite, then each point p € {1y is periodic. We denote by m,, € N the period
of a periodic point p. With any periodic point p we associate the stable and unstable manifolds

by

Wy ={zxeM": lim d(fkme (z),p) = 0},

k—+o0

Wy ={zeM": lim d(f~Fme (z),p) = 0}.

k——+o0

Stable and unstable manifolds are called invariant manifolds. We say that periodic orbits
O1,..., 0 form a cycle it Wg N W;Z_H #@forie{l,...,k} and Oyy1 = O).

afmr
A periodic point p € )y is said to be hyperbolic if the Jacobi matrix < (j; ) ’ has no
X p

eigenevalues equal to 1 in absolute value. If all of the eigenvalues are less (greater) than 1 in
absolute value, then the point p is called a sink (source). Sink and source points are called
nodes. A hyperbolic periodic point that is not a node is called a saddle.

By the hyperbolic structure of periodic points p, the stable W' and unstable W manifolds
are injective immersions of the space R% and R"~%, where g, is the number of eigenvalues of



the Jacobi matrix that are greater than 1 in absolute value. The number v, equal to +1 (—1)
if the mapping me]W; preserves (change) the orientation of W' is called the orientation type
of the point p. The path connected component of the set W'\ p (W, \ p) is called the unstable
(stable) separatriz of the point p.
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Figure 3. (a) source, (b) sink, (c) saddle.

A closed f-invariant set A C M™ is called an attractor of a discrete dynamical system f if

there is a compact neighborhood Uy of A such that f(Us) Cint Ug and A = () f¥(Ua). The
k=0
neighborhood Uy is called isolating. The repeller is the attractor for f~!. The complement to

the isolating neighborhood of an attractor is the isolating neighborhood of the dual repeller.

A diffeomorphism f: M™ — M™ is called a Morse-Smale diffeomorphism if

1) the nonwandering set 2 consists of finitely many hyperbolic orbits,

2) the manifolds W and W' transversally intersect for any nonwandering points p and gq.

A Morse-Smale diffeomorphism is called a gradient-like diffeomorphism if the condition W3 N
Wy, # @ for different points 01,09 € 0y implies dim W' < dim W' .

In a similar way, one can introduce a Morse—Smale flow on a manifold M™ which is called
gradient-like if there are no periodic trajectories.

In the case n = 2, the dynamics of gradient-like diffeomorphisms is closely connected with
the dynamics of periodic homeomorphisms. We recall that a homeomorphism ¢ : M? — M? is
said to be periodic of order m € N if ¢ = id and " # id for any natural number p < m.

Proposition 2.1 (cf. [8] and [9, Theorem 3.3]). Any orientation-preserving gradient-like
diffeomorphism f : M? — M? is topologically conjugate to the composition of a periodic home-
omorphism with a gradient-like flow shifted by the time unit.

According to the classification [10], an orientation-preserving periodic homeomorphism of
order m of a two-dimensional sphere has periodic points of only two periods 1 and m; moreover,
the set of its fixed points is nonempty. Then Proposition 2.1 implies the following assertion.

Proposition 2.2. Any orientation-preserving gradient-like diffeomorphism of a 2-sphere has
periodic points only of two periods 1 and m (possibly, m = 1); moreover, the set of its fized points
18 monempty.

Furthermore, for any orientation-preserving gradient-like diffeomorphism f : M? — M? the
following assertion holds.

Proposition 2.3 (cf. [9, Lemmas 3.1 and 3.3]). Assume that f : M?* — M? is an
orientation-preserving gradient-like diffeomorphism and my is the least natural number such
that Qym; consists of fized points with positive type orientation. Then the period of any saddle
separatriz of the diffeomorphism f is equal to my.
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Summarizing the results of Propositions 2.2 and 2.3, we obtain the following fact about the
structure of periodic data of gradient-like diffeomorphisms of a 2-sphere.

Proposition 2.4. For any orientation-preserving gradient-like diffeomorphism of a 2-sphere
the following assertions hold:

1) my =m,
2) any saddle point with negative orientation type is a fized point,

3) any saddle point with positive orientation type has period m.

2.2. Stable arcs in the space of diffeomorphisms. We consider a one-parameter family
of diffeomorphisms (an arc) ¢ : M™ — M™, t € [0,1]. Denote by 2 the set of arcs {¢;} that
start and terminate at Morse-Smale diffeomorphisms and possess the following properties:

1) ¢ has the finite limit set for all ¢ € [0, 1],

2) {¢¢} contains a finite set of bifurcational diffecomorphisms by, ..., b, € (0,1).

By [11], an arc {¢:} is said to be stable if it is an interior point of the equivalence class
with respect to the following relation: arcs {¢:}, {¢}} € 2 are conjugate if there exist home-
omorphisms h : [0,1] — [0,1] and H; : M™ — M™ such that h(b;) = b, i € {1,...,m},
Hypr = SO;Z(t)Ht, t € [0,1], and H; continuously depends on t.

o=f

Figure 4. Arc in the set 2.

It is also established in [11] that an arc {¢:} € 2 is stable if and only if it possesses the
following properties:

1) the diffeomorphism ¢, i € {1,...,m}, has no cycles and possesses exactly one nonhy-
perbolic periodic orbit (namely, a flip or a noncritical saddle-node); moreover, the arc unfolds
generically through the bifurcational value,

2) the stable and unstable manifolds of an periodic point of the diffeomorphism ¢y, t € [0, 1],
transversally intersect (cf. Figure 4).
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Figure 5. Saddle—node bifurcation.

We say that an arc {¢:} € 2 unfolds generically through a saddle-node bifurcation gy, (cf.
Figures 5 and 6) if, in some neighborhood of the nonhyperbolic point (p,b;), the arc ¢; is
conjugate to the arc
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where (z1,...,2,) € R™, |z;| < 1/2, [t| < 1/10.
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Figure 6. Graph of the mapping of the first coordinate of saddle-node bifurcation.
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Figure 7. Period doubling bifurcation (flip bifurcation).
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Figure 8. Graph of the mapping of the first coordinate and the squared mapping for
period doubling bifurcation (flip bifurcation).



We say that an arc {¢:} € 2 unfolds generically through a period doubling bifurcation (a
flip bifurcation) ¢p, (cf. Figures 7 and 8) if, in some neighborhood of the nonhyperbolic point
(p, bi), the arc ¢, is conjugate to the arc

+294n, ixn>

G, T2, o Ty T2ngs - - -1 Tn) = (—xl(liﬂ+x§,i2x2,...,:|:2:U1+nu, 5 g

where (z1,...,2,) € R, |z;| < 1/2, |t| < 1/10.

3 Dynamics of Diffeomorphisms of Class ¢

Lemma 3.1. For any diffeomorphism f € G the attractor Ay either consists of a single sink
point or is a connected one-dimensional complex without cycles.

Proof. We denote by D the connected component of the set S* \ C' containing Ay. Since
Ay is an attractor and the disk D lies in its basin of attraction, there exists a natural number

I such that f'(cl D) C int D. Then Ay = () f*(cl D), which implies that the attractor Ay is
k>0
connected (cf., for example, [9, Proposition 10.1]). We show that A contains no cycles.

Assume the contrary. Let Ay contain a cycle formed by the closures of unstable manifolds
of saddle points o1, ...,0,. Then the closed curve R = U cl W bounds the disk d C D, which

means that for each saddle o; one of its stable separatrlces lies in d. Consequently, the disk d
also contains the closure of this separatrix. Thus, RyNd # &, which contradicts the assumptions
on G. Thus, Ay does not contain cycles. O

Lemma 3.2. If the attractor Ay of a diffeomorphism f € G is different from a sink, then
exactly one of the following assertions holds:

1) Af =cl W

“ where ¢o = me = 1,1, = —1,
2) there exist points o,w € Ay such that ms = my, ¢w = 0,¢0 = Ve =1, w € cl WY and

W5 N Ay consists of exactly one unstable separatriz of the saddle o and the sink w.

Figure 9. Hlustration for Lemma 3.2.

Proof. Assume that the attractor Ay of a diffeomorphism f € G is not a sink. By Lemma
3.1, in this case, the one-dimensional complex Ay is a tree and, consequently, has the so-called



pendant vertex, i.e., there exist points o,w € Ay such that ¢, = 0, ¢ = 1, w € cl W}, and
W5 N Ay consists of exactly one unstable separatrix of the saddle o and the sink w. Two cases
are possible: 1) v, = —1 and 2) v, = 1 (cf. Figure 9).

Case 1: v, = —1. By Proposition 2.4, m, = 1 and the period of the separatrix of the saddle
o is equal to 2. Since Af has no cycles, we have w # f(w) and, consequently, m,, = 2. Then
Wi N Ay consists of exactly one unstable separatrix of the saddle o and the sink f(w). This
implies Ay =wUWIU f(w).

Case 2: v, = 1. By Proposition 2.4, m, = m, the period of the separatrix of the saddle o
is equal to m, and for the sink w there are two possibilities: 2a) m,, = m and 2b) m,, = 1. In
case 2a), we have the required assertion of the lemma. In case 2b), all m unstable separatrices
of the saddle ¢ lie in the basin of the sink w. Since W N Ay consists of one unstable separatrix
of the saddle o and the sink w, we have m = 1, and the required assertion follows. O

4 Construction of Stable Arc

We divide the class G into paiwise disjoint subsets G ,,, where A\, € N (1 € N) is the number
of sinks (sources) in the attractor A; (the repeller Ry). We note that the class G1,1 consists
of source-sink diffeomorphisms. To prove Theorem 1.1, it suffices to construct a stable arc
Lfyofrzi,r A > 1, connected the diffeomorphisms fy , € Gy, and fa—1, € Ga-1y (which is
done in Lemma 4.2 below). Indeed, in this case, the stable arc I'y,  p , = T'p, p, * - %
Lfy froy,, connects the diffeomorphisms fy , and fi . If ¢1 and ¢z are paths in the topological
space X such that ¢;(1) = c2(0), then we introduce the product of paths ¢; and co as the path
c1 * co defined by

C1 (Qt), 0 <

t<1/2,
(2t —1), 1/2<t

<1 (4.1)

(c1 % c2)(t) = {

1 1 1 -1 e P
Since the diffeomorphism fl,u belongs to G, 1, the stable arc Fff,ivff,f = Ffi;i’flf;lt * *
r LR, = {1t} connects the diffeomorphisms f° ; and f] . Then the stable arc T Frfia =

{7 1} connects the diffeomorphisms f1 ;, and f1 1. Thus, the required arc connecting the diffeo-
morphism fy , € G, with some source-sink diffeomorphism has the form Iy, , r, , * g, p
(cf. Figure 10).

Figure 10. Scheme for constructing the arc.

It is possible to reduce the number of saddle points on the attractor Ay by constructing an



arc unfolds generically through a saddle—node bifurcation or a flip. To realize such a scenario,
it is necessary to reduce the merging objects to the canonical form. Namely, in Lemma 4.2, we
present the dynamics in a neighborhood of a sink to the canonical contraction and, in Lemma
4.1, we prove that the unstable saddle separatrix in the basin of the canonical sink can be put
on a smooth arc. The following classical result is an important tool of all our constructions.

Proposition 4.1 (cf. [12, Theorem 5.8]). Assume that Y is a smooth manifold without
boundary, X is a smooth compact submanifold of Y, and {f; : X — Y,t € [0,1]} is a smooth
isotopy such that fo is the mapping of inclusion of X to Y. Then for any compact set A CY
containing supp { ft} there exists a smooth isotopy {g: € Diff (Y),t € [0,1]}, such that gy = id,
gtlx = fi|lx for any t € [0,1] and supp {g:} lies in A.

By supp{ fi} of an isotopy { f:} we mean the closure of the set {z € X : fi(z) # fo(x) for some
te[0,1]}.

Proposition 4.2 (cf. [13, Lemma 1.1]). Assume that 0 is a finite set of points of a manifold
M"™, o : M"™ — M™ is a diffeomorphism, and

—_— / —_—
T=JT™M:, T =|JTM],.
xebl €l

Then there exists a neighborhood U(0) D 0 and a number € > 0 such that for any isomorphism
G : T — T such that ||G — Dyl|| < €/10 there exists a diffeomorphism ¢ : M™ — M™ that is
e-close to o in the C' topology and such that Dy = G on T and 1) = f outside U(9).

Since, between any hyperbolic automorphisms of the same index (the number of eigenvalues
greater than 1 in modulus), there exists a path of hyperbolic automorphisms, Lemma 4.2 admits
the following generalization.

Proposition 4.3. Let a diffeomorphism pg : M™ — M™ have a hyperbolic point ro of period
mo, and let (Uy, h) be a local chart of the manifold M™ such that ro € Uy, h(rg) = O. Then
for any hyperbolic automorphism G possessing the same index as the automorphism (Dypy™)r,
there exist neighborhoods Uy and Uy of the point ro, Us C Uy C Uy, and an arc o : M™ — M™,
t € [0, 1], without bifurcation such that

m—1
1) the diffeomorphism ¢y, t € [0, 1], coincides with the diffeomorphism g outside |J @&(Uy),

k=0
1

m—
and |J ¢k(ro) is the hyperbolic orbit of period mg for every
k=0

2) the diffeomorphism ho"h™! coincides with the diffeomorphism G on the set h(Us).

Now, we describe the construction in detail. We denote by O(0,0) the origin in the plane
R2. For any r > 0 we set B, = {(x,y) € R? : 22 + ¢y < r2}. We denote by g : R? — R? the
diffeomorphism given by g(z,y) = (x/2,y/2).

Lemma 4.1. Assume that a diffeomorphism g : M? — M? has a hyperbolic sink wo and
a hyperbolic saddle oo such that the unstable separatriz vy,, of the saddle og lies in the basin
of the sink WS, and has the same period m as the sink wo. Let (Up,100) be a local chart of the
manifold M? such that wg € Uy, ¥o(wo) = O, and ©p"(Uo) C Uy. Then there exist neighborhoods



Vi and Vs of the point wo such that Vo C Vi C Uy and an arc ¢y : M? — M2, t € [0,1], without
bifurcations such that

m—1
(1) the diffeomorphism ¢, t € [0, 1], coincides with the diffeomorphism ¢ outside kgo ok (1),
1

m—
and | @f(wo) is the hyperbolic sink orbit of period m for all ¢y,
k=0
(2) Yo(vp, NVa) C OXy, where 7y, is an unstable separatriz of the saddle oy relative to the
diffeomorphism @1 (cf. Figure 11).

Figure 11. Rectification of separatrix.

Proof. Let g = ¢, ¢y = wogombal : R? — R2. By Proposition 4.3, without loss of
generality we can assume that gy = g on the disk Ba,, for some 79 > 0. We set Ky = Bay, \ By,
and g, = Yo(7Vp))-

We denote by E, the set of contractions @ : R? — R? coinciding with @, outside Ba,, and

with g on B,_, where rg < 2rg. For any ¥ € E; we set v = |J o (75, N Ko). By construction,
kEZ
the p-invariant curve 75 coincides with the pjy-invariant curve 5, outside By;. Then it suffices

to construct an arc from the contractions %, : R? — R2, ¢ € [0, 1], such that

1) the diffeomorphism @, t € [0, 1], coincides with the diffeomorphism @, outside B,

2) (v, N B, ) C OXi.

Then the arc ¢; : M? — M? is obtained from the arc @, as follows. Assume that Vi =
h™'(Byy), Vo = h™'(By,,), and ¢; = h™'g;h on Vi. Then ¢y, t € [0,1], coincides with ¢g

m—1

outside |J gplg(Vl), ei(2) = @o(z) for z € QDIS(VQ), ke {0,...,m—2}, and p(z2) = apt(go(l)*m(z))

for z € g~ H(Va).

To construct the arc @;, for an arbitrary diffeomorphism p € E,; we introduce the notation.
We represent the two-dimensional torus T? as the space of orbits of the action of the diffeomor-
phism g on R? \ O and denote by p : R? \ O — T? the natural projection. We fix generators
@ =p(0X1) and b = p(S') on T2. We set K = B,_\ B,_j» and 5 = p(75 N Ky). Then the
curve 5 is a node on the torus T? admitting the decomposition (1, —ngz), nz € Z, in the basis
a,b (cf., for example, [9]).

The arc @, is the smooth product of arcs n; and (;, where

10



(I) the arc n, t € [0,1], consists of contractions coinciding with the diffeomorphism %,
outside By, and connects the diffeomorphism 7y = @, with some dlffeomorphlsm m € By such
that the knot 7,, admits the decomposition (1, 0) in the basis @, b

(IT) the arc ¢; € Eg4, t € [0,1], connects the diffeormorphism (o = 7; with a diffeomorphism
(1 such that ¥;, = a.

Figure 13. Illustration for Lemma 4.1 (2).

(I) If nz = 0, then we set 1, = @, for all ¢t € [0,1]. Otherwise, we define the diffeomorphism
6, : R? — R2, t € [0, 1], such that 6;(O) = O and

pei(pv p > To,
Ou(pe?) = { peilerinemti=p/mo) /9 < p <y,
pei(go+2n¢7rt)’ p< TO/Q-

Then 7; = 0,5, : R? — R? is the desired arc (cf. Figure 12).

(IT) By construction, n; € Ey and the node 7, admits the decomposition (1,0) in the basis @,
b. There exists a dlffeomorphlsm h: T2 — T2 that is smoothly isotopic to the identity and such
that h(’ym) =a. Forr > 0 weset K, = B\ B, /5. We choose an open covering D = {Dx, ..., Dy}
of the torus T? such that the connected component D; of the set p‘l(Di) is a subset of K, with

11



some 7; < r;—1/2 and ry < 70/2. By [14], there exist diffeomorphisms @y, . .., @, : T? — T? that
are smoothly isotopic to the identity and possess the following properties:

(i) for every i € {1,...,q} there exists a smooth isotopy {@w;;} that is equal to the identity
outside D; and connects the identity with w;,

~

(ii) h = wy ... W,

Let w; : R2 — R? be a diffeomorphism coinciding with (p| K, )_li/ﬁi,tp on K,, and the identity
outside K, (cf. Figure 13). Then the desired arc is defined by ¢; = w1 ;... wq. The lemma is
proved. O

Lemma 4.2. For any diffeomorphisms fx, € Gy, A > 1, fac1u € Ga—1, there emists a

connecting stable arc Hy, ot

Proof. Let f = f),. By Lemma 3.2, there exist points o,w € Ay such that ¢, =0, ¢ = 1,
w € cl W}, and the intersection W N Ay consists of exactly one unstable separatrix vy of the
saddle ¢ and the sink w; moreover, the period of this separatrix is equal to the sink period m.
By Proposition 4.3 and Lemma 4.1, we can assume that there exists a local chart (U, ) of the
manifold S? such that w € U, ¥(w) = O, f™(U) C U, and ¥(yNU) C OX;. By Lemma 3.2,
for the diffeomorphism f two cases are possible: 1) v, = —1 and 2) v, = 1. We construct the
required arc separately for each case.

Case 1: v, = —1. In this case, Ay = W*UwU f(w) and m = 2. We set | = WUy~ (OX;1)U
f(¥~1(0OX1)). Then [ is a smooth curve containing As and such that the points w, f(w) are
interior; moreover, f(I) C I. We set I} = {(x1,22) € R? : |;] < 1/2}. On [-1/2;1/2] C OXy,
we introduce the family of diffeomorphisms ¢; : [-1/2,1/2] — R? by the formula

pr(r1) = <—a:1(1 + %(1 - 2t)) +a::f>

We define the diffeomorphism @, : ﬁl — R? by the formula @;(x1,22) = (@¢(x1), —22/2,). By
construction, the diffeomorphism ¢ has three periodic points of the period; namely, two sinks
P1(—1/v/10,0), P»(1/4/10,0) of period 2 and the fixed source point P3(0,0). For € > 0, 6 > 0
we set

1

Je = [—\/%—5,\/—1_0%—6} C OXy,

Vs = {(z1,22) € R?: |21| < 1/V10 + ¢, |22| < 5}

We choose a neighborhood II; of the arc Ay and a diffeomorphism 8 : II; — ﬁ1 such that
B(w) = P1, B(f(w)) = P, B(c) = Ps, and B(IN1I;) = Ox; N1L;. Then, in some neighborhood
Ve, 61, the diffeomorphism f: BfB~L is well defined. By Proposition 4.3, we can assume that,
in the neighborhoods

Vp, = {(z1,22) € R? : |21 + 1/V10| < &1, |x2| < 61},
Ve, = {(z1,22) € R?: |21 — 1/V10| < &1, |22| < 61},
Vp3 = {(271,272) € R2 : \xz\ < (51}

of the points Py, P, P3, the diffeomorphism f coincides with (Dgo)p,, (D%o)p,, (D%o)p,

respectively. We denote by ¢ the restriction of f onto J.,. On the cylinder V,, 5,, we define the
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diffeomorphism ¢ by the formula @(z1,22) = (¢(x1), —22/2). For § > 0 we define the bump
function ps(r), r > 0, equal to 1 for r € [0,6] and 0 for r > 2§. For d2 = /2 we define the
family of diffeomorphisms a;, t € [0, 1], on the cylinder V;, 5, by the formula

(w1, w2) = tps, (|z2)P(21, 22) + (1 = tps, (|22])) f (21, 22).-
By construction, a;, t € [0, 1], coincides with fon Ve, 6,5 G0 = fon Ve, and ap = @ on Vg, 5,.
Since the diffeomorphisms f and ¢ coincide on the segment J., and rectangles Vp,, Vp,, Vp,, we
can assume without loss of generality that o is chosen in such a way that the diffeomorphism
a; has no nonwandering points different from Py, P», Ps.

For eg =¢1/4 and t € [0, 1] we set

vt(21) = pey (|21]) e (1) + (1 = pey (|21]))p(21), 21 € ey

By construction, the diffeomorphism v; coincides with ¢; on J, and ¢ on Jg, \ Jae,. For t € [0, 1]
we set v(z1) = tvg(z1) + (1 — t)p(z1). By construction, vy coincides with ¢ and vq coincides
with vg. We set wy = vy * vy and wy(z1, z2) = (we(z1), —22/2) for (z1,22) € Vo, 5,

For 63 = 02/2 we define the family of diffeomorphisms by, t € [0,1], on the cylinder V;, 5, by
the formula N

be(w1,w2) = psy ([w2)we(w1, 22) + (1 = ps; (|22]))ar (21, z2).

By construction, by, t € [0, 1], coincides with fon Ve, 615 by = d; on Ver 15 by = wW; on Ve1.555
and b1 = 7[71 on ‘/;1’53.

We set & = ayxby and Uy = 71 (Vz1,6,)- Then the desired arc I'y, ;,_, coincides with f outside

m—1
U A (U2), fi(2) = f(2) for z € f¥(Us), k € {0,...,m — 2}, and fi(z) = B~ (@(B(f'(2))))
k=0
for z € fmY(Uy).

Case 2: v, = 1. In this case, the saddle ¢ and sink w have the same period m. We set
I = W¥ U 1(OX;). Then [ is a smooth curve containing v such that w and o are interior

points. We set II; = {(x1,22) € R? : |z;| < 1/2}. On [-1/2;1/2] C OX;, we define the family
of diffeomorphisms ¢; : [~1/2,1/2] — R? by the formula
2

7 1
= — 4+ —(2t—-1).
or(x) =21 + 5 + 10( )

We define the diffeomorphism @; : II; — R2 by the formula & (z1, z2) = (pi(21), 72/2). By con-
struction, the diffeomorphism @y has the sink point P;(—1/+/5,0) and saddle point Py(1/+/5,0).
Fore > 0,6 >0weset I. = [~1/v5 —¢,1/v/5+¢] C OX; and

Vs = {(x1,22) € R? : |21] < 1/V5 + ¢, |wa| < 6}

We choose a neighborhood II; of the arc v and a diffeomorphism S : Iy — ﬁ1 such that
B(w) = P1,B(0) = Py and S(IN1II;) = Ox1 N IL. Then, in some neighborhood V;, 5,, we have
a well-defined diffeomorphism f = Bf™B~1. By Proposition 4.3, we can assume that, in the
neighborhood

Vpl = {(1:1,$2) S R2 : |$1 + 1/\/g| <eé€q, |$2’ < 51},

Ve, = {(21,22) € R?: |z1 — 1/V5| < &1, |w2| < 61}
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of the points P, and P», the diffeomorphism f coincides with (D@o)p, and (Do) p, respectively.
We denote by ¢ the restriction of j?on I.,. On the cylinder V;, 5, , we define the diffeomorphism
¢ by @(x1,22) = (p(x1),22/2). For § > 0 we introduce the bump function ps(r), r > 0, equal
to 1 for r € [0,0] and 0 for r > 26. For dy = §;/2 we define the family of diffeomorphisms a,
t € [0,1], on the cylinder V;, 5, by the formula

ay(w1,w2) = tps, (|v2])p(21, 22) + (1 — tps, (|22])) f (21, 22).

By construction, a, t € [0,1], coincides with ]? on OV, 5,, o = fon Voo, and ap = @ on
Ve, 6,- Since the diffeomorphisms fand ¢ coincide on I, and rectangles Vp,, Vp,, without loss
of generality we can assume that &9 is chosen in such a way that the diffeomorphism a; has no
nonwandering points different from P; and Ps.

For eg = ¢1/4 and ¢t € [0, 1] we set

vi(r1) = pey (1)) pe (1) + (1 = pey (|21 ]))p (1), 21 € L.

By construction, the diffeomorphism v; coincides with ¢; on I, and ¢ on I, \ Is.,. For t € [0, 1]
we set v(z1) = tvg(z1) + (1 — t)p(z1). By construction, vy coincides with ¢ and v; coincides
with vg. We set wy = vy * vy and wy (1, 22) = (we(x1),22/2) for (x1,22) € V;, 5,
For 63 = 02/2 we define the family of diffeomorphisms Zt, t € [0,1], on the cylinder V,, 5, by
the formula
by(w1, w2) = psy ([w2))we (w1, 22) + (1 = psy(|22]))ar (21, z2).

By construction, Zt, t € [0,1], coincides with fon Ve, 615 by = @ on Vel 60 by = Wy on Vel 65
and bl = 51 on ‘/51,53.

We set ¢; = a; *gt and Uy = ﬁ_l(VEl’gl). Then the desired arc I'y, r, , coincides with

-1

f outside the set mﬂl H(Us), fi(z) = f(2) for z € fE(Us),k € {0,...,m — 2} and fi(2) =
k=0

BTHE(B(f1™(2)))) for z € 71 (Un). =
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