• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Article

Graphene membrane-based NEMS for study of interface interaction

Physica E: Low-Dimensional Systems and Nanostructures. 2020. Vol. 115. P. 113645-1-113645-6.
Siahlo A. A., Popov A. M., Poklonski N. A., Yurii E. Lozovik, Vyrko S. A.

The scheme and operational principles of graphene-based nanoelectromechanical system (NEMS) for study of interaction between graphene and surface of a sample is proposed. In such a NEMS multilayer graphene membrane bends due to van der Waals attraction between surface of graphene membrane and surface of a sample attached to a manipulator. An analysis of the NEMS total energy balance shows that the NEMS is bistable and abrupt transition between the stable states occurs if the sample is moved toward and backward the membrane. The detection of the interface distances corresponding to these transitions can be used to fit parameters of interatomic potentials for interaction between atoms of the surfaces of the graphene membrane and the sample. The analytical expression for dependences of this transition distances on NEMS sizes and parameters of the potential are derived on example of Lennard-Jones potential. For graphene-graphene interaction the transition distance is estimated to be from several nanometers to several tens nanometers for possible sizes of the proposed NEMS and thus can be measurable for example by transmission electron microscopy. Possibility of this NEMS implementation and application to study graphene-metal interaction are discussed.