Article
Power structure over the Grothendieck ring of maps
A power structure over a ring is a method to give sense to expressions of the form $(1+a_1t+a_2t^2...)^m$, where $a_i$, $i=1,2, ...$, and $m$ are elements of the ring. The (natural) power structure over the Grothendieck ring of complex quasi-projective varieties appeared to be useful for a number of applications. We discuss new examples of $\lambda$-and power structures over some Grothendieck rings. The main example is for the Grothendieck ring of maps of complex quasi-projective varieties. We describe two natural $\lambda$-structures on it which lead to the same power structure. We show that this power structure is effective. In the terms of this power structure we write some equations containing classes of Hilbert–Chow morphisms. We describe some generalizations of this construction for maps of varieties with some additional structures.
Currently, the effective use of all available geographical information in Earth Sciences worldwide is associated with problems of their processing and effective application, although more recently, the problems of storing large amounts of data have been added to this. In modern conditions, the spatial data Fund is a complex and extensive information field containing the most heterogeneous data in terms of spatial coverage and resolution. This is due to an increase in the volume of information, and the ways to choose the means and methods of processing. In the research work of scientists and the routine work of managers, only knowledge-intensive information is needed, which has specifics due to the specialization, complexity and strong connectivity of data.
This book describes modern tools and methods of geoinformation mapping, remote monitoring in geographical research for complex spatial analysis of natural and socio-economic processes. The synthesis of industry knowledge is also necessary for studying different aspects of nature and society, for establishing patterns and deepening geographical knowledge, and for making forecasts. Modern geoinformation technologies, remote sensing of the Earth, and cartographic works based on them most fully meet such complex requests.
We discuss a conjecture saying that derived equivalence of simply connected smooth projective varieties implies that the difference of their classes in the Grothendieck ring of varieties is annihilated by a power of the affine line class. We support the conjecture with a number of known examples, and one new example. We consider a smooth complete intersection X of three quadrics in P5 and the corresponding double cover Y→P2 branched over a sextic curve. We show that as soon as the natural Brauer class on Y vanishes, so that X and Y are derived equivalent, the difference [X]−[Y] is annihilated by the affine line class.
We present new functional equations connecting the counting series of plane and planar (in the sense of Harary and Palmer) dissections. Simple rigorous expressions for counting symmetric rr-dissections of polygons and planar SS-dissections are obtained.
We study the relations between Adams operation on a lambda-ring and the power structure on it, introduced by S. Gusein-Zade, I. Luengo and A. Melle-Hernandez. We give the explicit equations expressing them by each other. An interpretation of the formula of E. Getzler for the equivariant Euler characteristics of configuration spaces is also given.
A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traffic is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the final node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a finite-dimensional system of differential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of differential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.
Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.
Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.