Article
High speed data transmission using directly modulated microdisk lasers based on InGaAs/GaAs quantum well-dots
We report on direct large signal modulation and the reliability studies of microdisk lasers based on InGaAs/GaAs quantum well-dots. A 23 μm in diameter microlaser exhibits an open eye diagram up to 12.5 Gbit/s and is capable of error-free 10 Gbit/s data transmission at 30°C without temperature stabilization. The ageing tests of a 31 μm in diameter microdisk laser were conducted at room and elevated temperatures during more than 1200 hr. The average rate of the output power degradation was about 25 and 29 nW/hr at 40°C and 60°C, respectively.
The conference was held in the form of lectures by leading scientists, oral and poster presentations of young scientists and students of physical specialties, as well as leaders of innovative structures for the purpose of mutual acquaintance with the new results of fundamental research on a wide range of areas in physics, the prospects and challenges in the expansion of relations between science , education and high technologies. SECTION (heads): I. LASERS (Fundam. Probl., Computer ...) (prof. A.A.Ionin) II. OPTICS (quant., And nano materials and new sources) (d.f.m.n.A.V.Masalov) III. Solid state physics, INCLUDING Nanostructures ELEM. BASE UNIT (Corresponding Member of RAS N.N.Sibeldin) IV. Nuclear physics, high energy physics (prof. O.D.Dalkarov, Head: Prof. V.A.Ryabov) V. PLASMA PHYSICS and particle beams (Head: Prof. A.V.Agafonov) VI. Astrophysics (Head: Prof. S.A.Bogachev) VII. PHYSICS IN THE MODERN INSTRUMENT AND TECHNOLOGY (prof. V.N.Nevolin)
The paper discusses the methods and technologies used in the development of special software for control panel of shipboard laser complex (SLC) and a set of software simulators information flows generated by the equipment SLC interaction with the control panel.
We introduce an analytical approach to describe the multi-state lasing phenomenon in quantum dot lasers. We show that the key parameter is the hole-to-electron capture rate ratio. If it is lower than a certain critical value, the complete quenching of ground-state lasing takes place at high injection levels. At higher values of the ratio, the model predicts saturation of the ground-state power. This explains the diversity of experimental results and their contradiction to the conventional rate equation model. Recently found enhancement of ground-state lasing in p-doped samples and temperature dependence of the ground-statepower are also discussed.
High-performance injection microdisk (MD) lasers grown on Si substrate are demonstrated for the first time, to the best of our knowledge. Continuous-wave (CW) lasing in microlasers with diameters from 14 to 30 μm is achieved at room temperature. The minimal threshold current density of 600 A/cm2600 A/cm2 (room temperature, CW regime, heatsink-free uncooled operation) is comparable to that of high-quality MD lasers on GaAs substrates. Microlasers on silicon emit in the wavelength range of 1320–1350 nm via the ground state transition of InAs/InGaAs/GaAs quantum dots. The high stability of the lasing wavelength (𝑑𝜆/𝑑𝐼=0.1 nm/mAdλ/dI=0.1 nm/mA) and the low specific thermal resistance of 4×10−3°C×cm2/W4×10−3°C×cm2/W are demonstrated.
Lasers based on semiconductor whispering gallery mode (WGM) resonators represent a perfect platform for active small footprint high-sensitive devices for biodetection. Biochemical samples typically require aqueous solution, and the resonator should be placed into a cuvette with water or in a microfluidic chip. The characteristics of modern semiconductor WGM lasers with an active region based on InAs/InGaAs quantum dots (QDs) make them promising for creating compact highly sensitive devices for biodetection. Deep localization of carriers in InAs/InGaAs QDs and suppressed lateral migration helps us to obtain room-temperature lasing in microdisk lasers immersed in an aqueous medium. In this work, we studied the sensitivity of the microdisk laser resonance spectral position to the refractive index of the surrounding material by changing the salinity of the water solution. We also successfully detected model proteins (secondary antibodies attached to the microdisk surface) via measurement of the lasing threshold power. The proteinprotein interaction on the microdisk surface manifests itself by an increase in the laser threshold power. Thus, in this work we demonstrated, for the first time, the possibility of using QD semiconductor microdisk lasers for detection of proteins in a microfluidic device.
In Proceedings of the conference participants are presented on the following topics: 1) Lasers and Optics 2) Solid State Physics 3) Nuclear Physics 4) The generation and use of X-rays 5) Plasma Physics and particle beams 6) Astrophysics
We show that using dense arrays of InGaAs quantum well-dots enables uncooled high-frequency applications with a GHz-range bandwidth. A maximum 3-dB modulation frequency of about 6 GHz was found. The K-limited maximal frequency of 13 GHz was estimated from the modulation response analysis. The experimental values of the energy-todata reaches 1.5 pJ/bit for the smallest diameter under study (10 μm). A 23 μm in diameter microlaser exhibits open eye diagram up to 12.5 Gbit/s and is capable of error-free 10 Gbit/s data transmission at 30ºC without temperature stabilization. Our results demonstrate the potential to achieve miniature high-speed on-chip light sources for optical communication applications using lasers with a diameter of only a few micrometers.
CLEO®/Europe-EQEC targets university and industry scientists and researchers as well as students and graduates. The conference series has established a strong tradition as the largest, most comprehensive and prestigious gathering of optics and photonics researchers and engineers in Europe. With technical co-sponsorship provided by the European Physical Society (EPS), the Institute of Electrical and Electronics Engineers (IEEE) Photonics Society, and the Optical Society (OSA), CLEO®/Europe and EQEC have a strong international presence in the complementary research areas of laser science, photonics and quantum electronics.
The dynamics of a two-component Davydov-Scott (DS) soliton with a small mismatch of the initial location or velocity of the high-frequency (HF) component was investigated within the framework of the Zakharov-type system of two coupled equations for the HF and low-frequency (LF) fields. In this system, the HF field is described by the linear Schrödinger equation with the potential generated by the LF component varying in time and space. The LF component in this system is described by the Korteweg-de Vries equation with a term of quadratic influence of the HF field on the LF field. The frequency of the DS soliton`s component oscillation was found analytically using the balance equation. The perturbed DS soliton was shown to be stable. The analytical results were confirmed by numerical simulations.
Radiation conditions are described for various space regions, radiation-induced effects in spacecraft materials and equipment components are considered and information on theoretical, computational, and experimental methods for studying radiation effects are presented. The peculiarities of radiation effects on nanostructures and some problems related to modeling and radiation testing of such structures are considered.
Let G be a semisimple algebraic group whose decomposition into the product of simple components does not contain simple groups of type A, and P⊆G be a parabolic subgroup. Extending the results of Popov [7], we enumerate all triples (G, P, n) such that (a) there exists an open G-orbit on the multiple flag variety G/P × G/P × . . . × G/P (n factors), (b) the number of G-orbits on the multiple flag variety is finite.
I give the explicit formula for the (set-theoretical) system of Resultants of m+1 homogeneous polynomials in n+1 variables