### Article

## Discrete transparent boundary conditions for the equation of rod transverse vibrations

Local perturbations of an infinitely long rod travel to infinity. On the contrary, in the case of a finite length of the rod, the perturbations reach its boundary and are reflected. The boundary conditions constructed here for the implicit difference scheme imitate the Cauchy problem and provide almost no reflection. These boundary conditions are non- local with respect to time, and their practical implementation requires additional calcu- lations at every time step. To minimise them, a special rational approximation, similar to the Hermite - Padé approximation is used. Numerical experiments confirm the high “transparency”of these boundary conditions and determine the conditional stability regions for finite-difference scheme.

In this article we study one class of irrationalities which may be defined as covergent series with rational coefficients. This class contain a lot of well known constants such as $\ln 2$, $\pi$, e.t.c. We consider the problem of determination parameters of rational coefficients by rational approximation of irrationality. We deduced the lower and upper bounds and present an algorithm for determination of unknown parameters. Also, we present some results of practical calculations.

The influence of boundary conditions for the classical and wave packet molecular dynamics (MD) simulations of nonideal electron-ion plasma is studied. We start with the classical MD and perform a comprehensive study of convergence of the per-particle potential energy and pressure with the number of particles using both the nearest image method (periodic boundaries) and harmonic reflective boundaries. As a result an error caused by finiteness of the simulation box is estimated. Moreover electron oscillations given by the spectra of the current autocorrelation function are analyzed for both types of the boundary conditions. A special attention is paid to the reflecting boundaries since they prevent wave packet spreading in the Wave Packet MD. To speed up classical MD simulations we use the GPU-accelerated code.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.