### ?

## Lie algebras of vertical derivations on semiaffine varieties with torus actions

Journal of Pure and Applied Algebra. 2021. Vol. 225. No. 2. P. 106499.

Let X be a normal variety endowed with an algebraic torus action. An additive group action alpha on X is called vertical if a general orbit of alpha is contained in the closure of an orbit of the torus action and the image of the torus normalizes the image of alpha in Aut(X). Our first result in this paper is a classification of vertical additive group actions on X under the assumption that X is proper over an affine variety. Then we establish a criterion as to when the infinitesimal generators of a finite collection of additive group actions on X generate a finite-dimensional Lie algebra inside the Lie algebra of derivations of X.

Arzhantsev I., Braun L., Hausen J. et al., European Journal of Mathematics 2018 Vol. 4 No. 1 P. 242–312

Looking at the well understood case of log terminal surface singularities, one observes that each of them is the quotient of a factorial one by a finite solvable group. The derived series of this group reflects an iteration of Cox rings of surface singularities. We extend this picture to log terminal singularities in any dimension ...

Added: March 4, 2018

Ayzenberg A., Cherepanov V., / Cornell University. Series arXiv "math". 2019. No. 1905.04761.

Let the compact torus Tn−1 act on a smooth compact manifold X2n effectively with nonempty finite set of fixed points. We pose the question: what can be said about the orbit space X2n/Tn−1 if the action is cohomologically equivariantly formal (which essentially means that Hodd(X2n;Z)=0). It happens that homology of the orbit space can be arbitrary in degrees 3 and higher. For any finite ...

Added: October 23, 2019

Ayzenberg A., Cherepanov V., Osaka Journal of Mathematics 2021 Vol. 58 No. 4 P. 839–853

Let the compact torus Tn1 act on a smooth compact manifold X2n eectively with nonempty nite set of xed points. We pose the question: what can be said
about the orbit space X2n{Tn1 if the action is cohomologically equivariantly formal
(which essentially means that HoddpX2n;Zq 0)? It happens that homology of the orbit
space can be arbitrary ...

Added: October 31, 2019

Ayzenberg A., / Cornell University. Series arXiv "math". 2019. No. 1903.03460.

For an action of a compact torus T on a smooth compact manifold~X with isolated fixed points the number 12dimX−dimT is called the complexity of the action. In this paper we study certain examples of torus actions of complexity one and describe their orbit spaces. We prove that HP2/T3≅S5 and S6/T2≅S4, for the homogeneous spaces HP2=Sp(3)/(Sp(2)×Sp(1)) and S6=G2/SU(3). Here the maximal tori of the corresponding Lie ...

Added: October 23, 2019

Popov V., / Bielefeld University. Series LAGRS "Linear Algebraic Groups and Related Structures". 2012. No. 485.

We construct counterexamples to the rationality conjecture regar-ding the new version of the Makar-Limanov invariant introduced in A. Liendo, Ga-actions of fiber type on affine T-varieties, J. Algebra 324 (2010), 3653–3665. ...

Added: January 9, 2013

Shirokov D., Advances in Applied Clifford Algebras 2010 Vol. 20 No. 2 P. 411–425

In this paper we present new formulas, which represent commutators and anticommutators of Clifford algebra elements as sums of elements of different ranks. Using these formulas we consider subalgebras of Lie algebras of pseudo-unitary groups. Our main techniques are Clifford algebras. We have found 12 types of subalgebras of Lie algebras of pseudo-unitary groups. ...

Added: June 16, 2015

Ayzenberg A., Algebraic and Geometric Topology 2020 Vol. 20 No. 6 P. 2957–2994

A periodic tridiagonal matrix is a tridiagonal matrix with additional two entries at the corners. We study the space $X_{n,\lambda}$ of Hermitian periodic tridiagonal $n\times n$-matrices with a fixed simple spectrum $\lambda$. Using the discretized S\edt{c}hr\"{o}dinger operator we describe all spectra $\lambda$ for which $X_{n,\lambda}$ is a topological manifold. The space $X_{n,\lambda}$ carries a natural effective action of a compact $(n-1)$-torus. ...

Added: January 14, 2020

Vladimir L. Popov, European Journal of Mathematics 2016 Vol. 2 No. 1 P. 283–290

According to the classical theorem, every algebraic variety
endowed with a nontrivial rational action of a connected linear algebraic
group is birationally isomorphic to a product of another algebraic variety
and the projective space of a positive dimension. We show that the classical proof of this theorem
actually works only in characteristic 0 and we give a characteristic free
proof ...

Added: February 2, 2016

Zaitseva Y., Математические заметки 2019 Т. 105 № 6 С. 824–838

В работе получено описание однородных локально нильпотентных дифференцирований алгебры регулярных функций некоторого класса триномиальных гиперповерхностей. Данный класс включает в себя все нефакториальные триномиальные гиперповерхности. ...

Added: September 19, 2019

Arzhantsev I., Hausen J., Mathematical Research Letters 2007 Vol. 14 No. 1 P. 129–136

Given a multigraded algebra A, it is a natural question whether or not for
two homogeneous components A_u and A_v, the product A_nuA_nv is the whole component
A_nu+nv for n big enough. We give combinatorial and geometric answers to this question. ...

Added: July 10, 2014

Ayzenberg A., Бухштабер В. М., Математический сборник 2021

An arrow matrix is a matrix with zeroes outside the main diagonal, first row, and first column. We consider the space
$M_{\St_n,\lambda}$ of Hermitian arrow $(n+1)\times (n+1)$-matrices with fixed simple spectrum $\lambda$. We prove this space to be a smooth $2n$-manifold, and its smooth structure is independent on the spectrum. Next, this manifold carries the locally standard torus action: we describe ...

Added: November 6, 2020

Vladimir L. Popov, Journal of the Ramanujan Mathematical Society 2013 Vol. 28A No. Special Issue-2013 dedicated to C.S.Seshadri's 80th birthday P. 409–415

We construct counterexamples to the rationality conjecture regarding the new version of the Makar-Limanov invariant formulated in A. Liendo, G_a-actions of fiber type on affine T-varieties, J. Algebra 324 (2010), 3653--3665. ...

Added: June 20, 2013

. Zürich: European Mathematical Society Publishing house, 2010.

Fascinating and surprising developments are taking place in the classification of algebraic varieties. Work of Hacon and McKernan and many others is causing a wave of breakthroughs in the Minimal Model Program: we now know that for a smooth projective variety the canonical ring is finitely generated. These new results and methods are reshaping the ...

Added: October 11, 2013

Попов В. Л., Известия РАН. Серия математическая 2019 Т. 84 № 4 С. 194–225

The rst group of results of this paper concerns the compressibility of finite subgroups of the Cremona groups. The second concerns the embeddability of other groups in the Cremona groups and, conversely, the Cremona groups in
other groups. The third concerns the connectedness of the Cremona groups. ...

Added: July 31, 2019

Р.С. Авдеев, Труды Московского математического общества 2010 Т. 71 С. 235–269

A spherical homogeneous space G/H of a connected semisimple algebraic group G is called excellent if it is quasi-affine and its weight semigroup is generated by disjoint linear combinations of the fundamental weights of the group G. All the excellent affine spherical homogeneous spaces are classified up to isomorphism. ...

Added: February 25, 2014

. Switzerland: Birkhauser/Springer, 2019.

Lie theory, inaugurated through the fundamental work of Sophus Lie during the late
nineteenth century, has proved central in many areas of mathematics and theoretical
physics. Sophus Lie’s formulation was originally in the language of analysis and
geometry; however, by now, a vast algebraic counterpart of the theory has been
developed. As in algebraic geometry, the deepest and most ...

Added: October 26, 2019

Ayzenberg A., Труды Математического института им. В.А. Стеклова РАН 2018 Т. 302 С. 23–40

We consider an effective action of a compact (n-1)-torus on a smooth 2n-manifold with isolated xed points. We prove that under certain conditions the orbit space is a closed topological manifold. In particular, this holds for certain torus actions with disconnected stabilizers. There is a ltration of the orbit manifold by orbit dimensions. The subset ...

Added: October 15, 2018

Shirokov D., Advances in Applied Clifford Algebras 2012 Vol. 22 No. 1 P. 243–256

We present a new classification of Clifford algebra elements. Our classification is based on the notion of quaternion type. Using this classification we develop a method for analyzing commutators and anticommutators of Clifford algebra elements. This method allows us to find out and prove a number of new properties of Clifford algebra elements. ...

Added: June 16, 2015

Arzhantsev I., Ricerche di Matematica 2024 Vol. 73 No. 2 P. 715–724

We show that an effective action of the one-dimensional torus G_m on a normal affine algebraic variety X can be extended to an effective action of a semi-direct product G_m⋌G_a with the same general orbit closures if and only if there is a divisor D on X that consists of G_m-fixed points. This result is applied to the study of orbits of the automorphism group Aut(X) on X. ...

Added: August 16, 2021

Ayzenberg A., Masuda M., / Cornell University. Series arXiv "math". 2019.

Let a compact torus T=T^{n−1} act on a smooth compact manifold X=X^{2n} effectively, with nonempty finite set of fixed points, and suppose that stabilizers of all points are connected. If H^{odd}(X)=0 and the weights of tangent representation at each fixed point are in general position, we prove that the orbit space Q=X/T is a homology (n+1)-sphere. If, in addition, π_1(X)=0, then Q is homeomorphic to S^{n+1}. ...

Added: January 14, 2020

Shabalin T., Сибирский математический журнал 2013 Т. 54 № 4 С. 947–958

Under study are the centralizers of 3-dimensional simple Lie subalgebras in the universal enveloping algebra of a 7-dimensional simple Malcev algebra. We find some sets of generators for these centralizers in characteristic not 2 nor 3 and for the subalgebra generated by the centralizer in the central closure of the universal enveloping algebra in characteristic ...

Added: September 16, 2014

Popov V., Известия РАН. Серия математическая 2022 Т. 86 № 5 С. 73–96

We explore to what extent the group variety of a connected algebraic group or the group manifold of a real Lie group determines its group structure. ...

Added: June 9, 2022

Elagin A. D., Sbornik Mathematics 2012 Vol. 203 No. 5 P. 645–676

We put forward a method for constructing semiorthogonal decompositions of the derived category of G-equivariant sheaves on a variety X under the assumption that the derived category of sheaves on X admits a semiorthogonal decomposition with components preserved by the action of the group G on X. This method is used to obtain semiorthogonal decompositions ...

Added: February 4, 2013

Arzhantsev I., Acta Arithmetica 2018 Vol. 186 No. 1 P. 87–99

We prove that every rational trinomial affine hypersurface admits a horizontal polynomial curve. This result provides an explicit non-trivial polynomial solution to a trinomial equation. Also we show that a trinomial affine hypersurface admits a Schwarz-Halphen curve if and only if the trinomial comes from a platonic triple. It is a generalization of Schwarz-Halphen's Theorem ...

Added: October 20, 2018