### Article

## Polynomial graph invariants and the KP hierarchy

We prove that the generating function for the symmetric chromatic polynomial of all simple graphs is (after an appropriate scaling change of variables) a linear combination of one-part Schur polynomials. This statement immediately implies that it is also a tau-function of the Kadomtsev–Petviashvili integrable hierarchy of mathematical physics. Moreover, we describe a large family of polynomial graph invariants leading to the same tau-function. In particular, we introduce the Abel polynomial for graphs and show this for its generating function. The key point here is a Hopf algebra structure on the space spanned by graphs and the behavior of the invariants on its primitive space.

We suggest a generalization of Pontryagin duality from the category of commutative, complex Lie groups to the category of (not necessarily commutative) Stein groups with algebraic connected component of identity. In contrast to the other similar generalizations, in our approach the enveloping category consists of Hopf algebras (in a proper symmetrical monoidal category).

We find all formal solutions to the -dependent KP hierarchy. They are characterized by certain Cauchy-like data. The solutions are found in the form of formal series for the tau-function of the hierarchy and for its logarithm (the *F*-function). An explicit combinatorial description of the coefficients of the series is provided.

In the present paper we survey existing graph invariants for gradient-like flows on surfaces up to the topological equivalence and develop effective algorithms for their distinction (let us recall that a flow given on a surface is called a *gradient-like flow* if its non-wandering set consists of a finite set of hyperbolic fixed points, and there is no trajectories connecting saddle points). Additionally, we construct a parametrized algorithm for the Fleitas’s invariant, which will be of linear time, when the number of sources is fixed. Finally, we prove that the classes of topological equivalence and topological conjugacy are coincide for gradient-like flows, so, all the proposed invariants and distinguishing algorithms works also for topological classification, taking in sense time of moving along trajectories. So, as the main result of this paper we have got multiple ways to recognize equivalence and conjugacy class of arbitrary gradient-like flow on a closed surface in a polynomial time.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.