### Article

## Solving linear parabolic rough partial differential equations

We study linear rough partial differential equations in the setting of [Friz and Hairer, Springer, 2014, Chapter 12]. More precisely, we consider a linear parabolic partial differential equation driven by a deterministic rough path W of Hölder regularity α with 1/3 < α ≤ 1/2. Based on a stochastic representation of the solution of the rough partial differential equation, we propose a regression Monte Carlo algorithm for spatio-temporal approximation of the solution. We provide a full convergence analysis of the proposed approximation method which essentially relies on the new bounds for the higher order derivatives of the solution in space. Finally, we present a simulation study showing the applicability of the proposed algorithm.

This article describes the plreg command, which implements the difference-based algorithm for fitting partial linear regression models.

We present a comparative study of several algorithms for an in-plane random walk with a variable step. The goal is to check the efficiency of the algorithm in case where the random walk terminates at some boundary. We recently found that a finite step of the random walk produces a bias in the hitting probability and this bias vanishes in the limit of an infinitesimal step. Therefore, it is important to know how a change in the step size of the random walk influences the performance of simulations. We propose an algorithm with the most effective procedure for the step-length-change protocol.

Risk Management approach is an essential part of the project. Large industries and particular companies incorporate RM Culture. Statistics shows, that companies with Project Management (PM) Structure reduce cost ineffectiveness up to 20%. In oil and gas industry PM Risk Analysis (PRMA) has been widely used for the last years. Various models and procedures have been developed to manage projects of different scale. Nonetheless, Offshore Projects (OP) complexity, high uncertainty of technical, financial, market and government factors, as well as different sea conditions, still makes sense to improve general PRMA models according to the oil and gas OP features. Traditional RM tools and techniques are not appropriate to cope with complex projects in the Arctic. Companies will have to modify risk assessment process or look for new methods. The paper suggests OPRMM, where the attempt to implement PM tools and techniques together with mathematical modeling and expert assessment is made and institutional factors are included. Practically, it is founded on the comparison between offshore field development in the Barents Sea and the Kara Sea. The reason for research is debates around future Arctic oil and gas projects and their commercial potential. Several large projects with participation of major international companies in the Barents Sea and the prospectivity of the Kara Sea Projects in conditions of technology difficulties are under discussion and have not reached the investment project phase yet. OPRMM starts with identifying the key factors, which could affect offshore field development. Inside the investment regime modified real option value (ROV) model for OP is developed: stop option and scale transformation option. Basing on the binominal trees and Monte Carlo Simulation it is possible to see the perspectives of the OP at an early stage in the conditions of high uncertainty. Incorporating the ROV model into investment regime allows operator to choose the territory to explore. The research shows, that offshore projects in the Arctic offshore is not only under the pressure of internal corporative factors, but also under influence of external institutional factors. New tools and approaches will be required in Arctic projects where no one wants to be looking in the wrong place.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.