### Article

## Smoothness of Derived Categories of Algebras

We prove smoothness in the dg sense of the bounded derived category of finitely generated modules over any finite-dimensional algebra over a perfect field, thereby answering a question of Iyama. More generally, we prove this statement for any algebra over a perfect field that is finite over its center and whose center is finitely generated as an algebra. These results are deduced from a general sufficient criterion for smoothness.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.

We put forward a method for constructing semiorthogonal decompositions of the derived category of *G*-equivariant sheaves on a variety *X* under the assumption that the derived category of sheaves on *X* admits a semiorthogonal decomposition with components preserved by the action of the group *G* on *X*. This method is used to obtain semiorthogonal decompositions of equivariant derived categories for projective bundles and blow-ups with a smooth centre as well as for varieties with a full exceptional collection preserved by the group action. Our main technical tool is descent theory for derived categories.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 R. Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny of G is bijective; this answers Grothendieck's question. In particular, for char(k)=0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char(k)=0, that the algebra k[G]^G of class functions on G is generated by rk(G) elements. We describe, for arbitrary G, a minimal generating set of k[G]^G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]^G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G; this answers the other Grothendieck's question.

The study of derived categories is a subject that attracts increasingly many young mathematicians from various fields of mathematics, including abstract algebra, algebraic geometry, representation theory and mathematical physics. The concept of the derived category of sheaves was invented by Grothendieck and Verdier in the 1960s as a tool to express important results in algebraic geometry such as the duality theorem. In the 1970s, Beilinson, Gelfand and Gelfand discovered that a derived category of an algebraic variety may be equivalent to that of a finite dimensional non-commutative algebra, and Mukai found that there are non-isomorphic algebraic varieties that have equivalent derived categories. In this way the derived category provides a new concept that has many incarnations. In the 1990s, Bondal and Orlov uncovered an unexpected parallelism between derived categories and birational geometry. Kontsevich’s homological mirror symmetry provided further motivation for the study of derived categories. This book is the proceedings of a conference held at the University of Tokyo in January 2011 on the current status of the research on derived categories related to algebraic geometry. Most articles are survey papers on this rapidly developing field. The book is suitable for young mathematicians who want to enter this exciting field. Some basic knowledge of algebraic geometry is assumed.

In this paper we present a radio frequency precision sensor on rectangular spirals with the opposite direction of winding. The sensor is purposed to control and measure the gap to a flat metal surface. The sensor model was created using CST Studio Suite software. Using this model, we obtained relation between the gap width and change of electrodynamic parameters of the sensor. A schematic diagram of the sensor's measuring generator based on a modification of the Colpitts LC-generator was developed, and its characteristics were obtained in the PSpice. This paper also indicates the advantages of using proposed sensor as a base for various devices and systems for monitoring, measurement and controlling of physical quantities and parameters of technological processes.

The most important component of a modern product quality control system is automated measuring devices, which exclude subjective errors during the control according to an approved method. When mass production of electronic products such tools are developed in accordance with the production technology and the life cycle of specific products. For independent quality control laboratories that carry out orders for selective control of product parameters, the use of such tools is practically excluded. In our opinion, it is advisable to equip such laboratories with automated measurement systems based on commercially produced measuring devices with the ability to quickly adapt to changing the control procedures at the program level. The paper explores the possibilities of using digital oscilloscopes of the MSO1000 series and generators of the DG1000 series as components of a measuring laboratory, analyzes the basic capabilities of these devices, and provides fragments of instrument control code for their integration into a single automated measurement system. As an example of practical implementation, the process of automated measurement of the transfer characteristic of an optical angular displacement sensor using the API functions of the Rigol MSO 1000 digital oscilloscope and the specialized transfer characteristics processing libraries is shown.

We put forward a method for constructing semiorthogonal decompositions of the derived category of G-equivariant sheaves on a variety X under the assumption that the derived category of sheaves on X admits a semiorthogonal decomposition with components preserved by the action of the group G on X. This method is used to obtain semiorthogonal decompositions of equivariant derived categories for projective bundles and blow-ups with a smooth centre as well as for varieties with a full exceptional collection preserved by the group action. Our main technical tool is descent theory for derived categories.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.