Article
Pattern recognition in low-resolution instrumental tactile imaging
Background. Tactile perception is an essential source of information. However instrumental registration and automated analysis of tactile data is still at an initial point of the development. Recently a Medical Tactile Endosurgical Complex (MTEC) has been introduced into clinical practice as a universal instrument for intrasurgical registration of tactile images. Images registered by MTEC have very limited resolution both in terms of a number of tactile pixels and a number of discretization levels. In this study we investigated whether this resolution is sufficient for reliable pattern recognition. Methods. Our study used a set of artificial samples which included six sample types. In particular, four of these types directly tested the ability to discriminate patterns with the same embedment projection sizes but different curvatures, or similar curvatures but different projection sizes. Two widely used machine learning methods were evaluated: random forests and k-nearest neighbors. These methods were applied to points representing registered tactile images in a relatively low-dimensional feature space. Additionally an in-silico cloning of images was used to increase classification reliability. Results. Both classification methods – random forests and k-nearest neighbors – showed good classification reliability with accuracy 68.6% and 72.9% on the validation set, respectively. These values are more than four times higher than an accuracy of six-class “random classifier”. Random forests additionally provided evaluation of importance of features used for classification. Conclusion. Despite poor resolution of tactile images registered by MTEC a combination of conventional machine learning methods with a specific feature set and specific tricks provides highly reliable results of automated analysis of these images even in case of nontrivial tasks such as sample classification with very similar classes.
The paper makes a brief introduction into multiple classifier systems and describes a particular algorithm which improves classification accuracy by making a recommendation of an algorithm to an object. This recommendation is done under a hypothesis that a classifier is likely to predict the label of the object correctly if it has correctly classified its neighbors. The process of assigning a classifier to each object involves here the apparatus of Formal Concept Analysis. We explain the principle of the algorithm on a toy example and describe experiments with real-world datasets.
Symbolic classifiers allow for solving classification task and provide the reason for the classifier decision. Such classifiers were studied by a large number of researchers and known under a number of names including tests, JSM-hypotheses, version spaces, emerging patterns, proper predictors of a target class, representative sets etc. Here we consider such classifiers with restriction on counter-examples and discuss them in terms of pattern structures. We show how such classifiers are related. In particular, we discuss the equivalence between good maximally redundant tests and minimal JSM-hyposethes and between minimal representations of version spaces and good irredundant tests.
This book constitutes the refereed proceedings of the 6th IAPR TC3 International Workshop on Artificial Neural Networks in Pattern Recognition, ANNPR 2014, held in Montreal, QC, Canada, in October 2014. The 24 revised full papers presented were carefully reviewed and selected from 37 submissions for inclusion in this volume. They cover a large range of topics in the field of learning algorithms and architectures and discussing the latest research, results, and ideas in these areas.
In this paper, we use robust optimization models to formulate the support vector machines (SVMs) with polyhedral uncertainties of the input data points. The formulations in our models are nonlinear and we use Lagrange multipliers to give the first-order optimality conditions and reformulation methods to solve these problems. In addition, we have proposed the models for transductive SVMs with input uncertainties.
We propose extensions of the classical JSM-method andtheNa ̈ıveBayesianclassifierforthecaseoftriadicrelational data. We performed a series of experiments on various types of data (both real and synthetic) to estimate quality of classification techniques and compare them with other classification algorithms that generate hypotheses, e.g. ID3 and Random Forest. In addition to classification precision and recall we also evaluated the time performance of the proposed methods.
This volume is the first of its kind to offer a detailed, monographic treatment of Semitic genealogical classification. The introduction describes the author's methodological framework and surveys the history of the subgrouping discussion in Semitic linguistics, and the first chapter provides a detailed description of the proto-Semitic basic vocabulary. Each of its seven main chapters deals with one of the key issues of the Semitic subgrouping debate: the East/West dichotomy, the Central Semitic hypothesis, the North West Semitic subgroup, the Canaanite affiliation of Ugaritic, the historical unity of Aramaic, and the diagnostic features of Ethiopian Semitic and of Modern South Arabian. The book aims at a balanced account of all evidence pertinent to the subgrouping discussion, but its main focus is on the diagnostic lexical features, heavily neglected in the majority of earlier studies dealing with this subject. The author tries to assess the subgrouping potential of the vocabulary using various methods of its diachronic stratification. The hundreds of etymological comparisons given throughout the book can be conveniently accessed through detailed lexical indices.
A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traffic is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the final node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a finite-dimensional system of differential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of differential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.
Event logs collected by modern information and technical systems usually contain enough data for automated process models discovery. A variety of algorithms was developed for process models discovery, conformance checking, log to model alignment, comparison of process models, etc., nevertheless a quick analysis of ad-hoc selected parts of a journal still have not get a full-fledged implementation. This paper describes an ROLAP-based method of multidimensional event logs storage for process mining. The result of the analysis of the journal is visualized as directed graph representing the union of all possible event sequences, ranked by their occurrence probability. Our implementation allows the analyst to discover process models for sublogs defined by ad-hoc selection of criteria and value of occurrence probability
The geographic information system (GIS) is based on the first and only Russian Imperial Census of 1897 and the First All-Union Census of the Soviet Union of 1926. The GIS features vector data (shapefiles) of allprovinces of the two states. For the 1897 census, there is information about linguistic, religious, and social estate groups. The part based on the 1926 census features nationality. Both shapefiles include information on gender, rural and urban population. The GIS allows for producing any necessary maps for individual studies of the period which require the administrative boundaries and demographic information.
Existing approaches suggest that IT strategy should be a reflection of business strategy. However, actually organisations do not often follow business strategy even if it is formally declared. In these conditions, IT strategy can be viewed not as a plan, but as an organisational shared view on the role of information systems. This approach generally reflects only a top-down perspective of IT strategy. So, it can be supplemented by a strategic behaviour pattern (i.e., more or less standard response to a changes that is formed as result of previous experience) to implement bottom-up approach. Two components that can help to establish effective reaction regarding new initiatives in IT are proposed here: model of IT-related decision making, and efficiency measurement metric to estimate maturity of business processes and appropriate IT. Usage of proposed tools is demonstrated in practical cases.