### Article

## Non-well-founded derivations in the Gödel-Löb provability logic

We consider Hilbert-style non-well-founded derivations in the Gödel-Löb provability logic GL and establish that GL with the obtained derivability relation is globally complete for algebraic and neighbourhood semantics.

The Gödel-Löb provability logic GL and establish that

We consider a many-sorted variant of Japaridze’s polymodal provability logic (GLP). In this variant, which is denoted GLP∗, propositional variables are assigned sorts n≤ω, where variables of finite sort n<ω are interpreted as Π_{n+1}-sentences of the arithmetical hierarchy, while those of sort ω range over arbitrary ones. We prove that GLP∗is arithmetically complete with respect to this interpretation. Moreover, we relate GLP∗ to its one-sorted counterpart GLP and prove that the former inherits some well-known properties of the latter, like Craig interpolation and polynomial space (PSPACE) decidability. We also study a positive variant of GLP∗ that allows for an even richer arithmetical interpretation—variables are permitted to range over theories rather than single sentences. This interpretation in turn allows the introduction of a modality that corresponds to the full uniform reflection principle. We show that our positive variant of GLP∗ is arithmetically complete.

We study interpolation properties of provability logics. We prove the Lyndon interpolation for GL and the uniform interpolation for GLP.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.

We present a proof system for the provability logic GLP in the formalism of nested sequents and prove the cut elimination theorem for it. As an application, we obtain the reduction of GLP to its important fragment called J syntactically.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.