• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Article

Computing Majority by Constant Depth Majority Circuits with Low Fan-in Gates

Theory of Computing Systems. 2019. Vol. 63. No. 5. P. 956-986.
Podolskii V. V., Kulikov A. S.

We study the following computational problem: for which values of k, the majority of n bits MAJn can be computed with a depth two formula whose each gate computes a majority function of at most k bits? The corresponding computational model is denoted by MAJk ∘ MAJk. We observe that the minimum value of k for which there exists a MAJk ∘ MAJk circuit that has high correlation with the majority of n bits is equal to Θ(n1/2). We then show that for a randomized MAJk ∘ MAJk circuit computing the majority of n input bits with high probability for every input, the minimum value of k is equal to n2/3 + o(1). We show a worst case lower bound: if a MAJk ∘ MAJk circuit computes the majority of n bits correctly on all inputs, then k ≥ n13/19 + o(1).