### Article

## Homological Mirror Symmetry, coisotropic branes and P = W

We discuss the P = W conjecture and suggest and a new approach to it using the

theory of coisotropic branes and algebraic cycles. Then we show a way to produce

many examples of these coisotropic branes.

We propose Gamma Conjectures for Fano manifolds which can be thought of as a square root of the index theorem. Studying the exponential asymptotics of solutions to the quantum differential equation, we associate a principal asymptotic class A_F to a Fano manifold F. We say that F satisfies Gamma Conjecture I if A_F equals the Gamma class Γ_F. When the quantum cohomology of F is semisimple, we say that F satisfies Gamma Conjecture II if the columns of the central connection matrix of the quantum cohomology are formed by Γ_F Ch(E_i) for an exceptional collection {E_i} in the derived category of coherent sheaves D^b_{coh}(F). Gamma Conjecture II refines part (3) of Dubrovin's conjecture. We prove Gamma Conjectures for projective spaces, toric manifolds, certain toric complete intersections and Grassmannians.

https://arxiv.org/abs/1803.11549

I describe a combinatorial construction of the cohomology classes in compactified moduli spaces of curves ZˆI∈H∗(barM_g,n) starting from the following data: an odd derivation I, whose square is non-zero in general, I2≠0, acting on a ℤ/2ℤ-graded associative algebra with odd scalar product. The constructed cocycles were first described in the theorem 2 in the author's paper "Noncommmutative Batalin-Vilkovisky geometry and Matrix integrals". Comptes Rendus Mathematique, 348, pp. 359-362, arXiv:0912.5484 , preprint HAL-00102085 (09/2006). By the theorem 3 from loc.cit. the family of the cohomology classes obtained in the case of the algebra Q(N) and the derivation I=[Λ,⋅] coincided with the generating function of products of ψ−classes. This was the first nontrivial computation of categorical Gromov-Witten invariants of higher genus. The result matched with the mirror symmetry prediction, i.e. with the classical (non-categorical) Gromov-Witten descendent invariants of a point for all genus. As a byproduct of that computation a new combinatorial formula for products of ψ-classes ψi=c1(T∗pi) in the cohomology H∗(barM_g,n) is written out.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.