### Article

## Влияние нелинейного взаимодействия на эволюцию волн в мелководном бассейне

The influence of nonlinear interaction of oppositely directed nonlinear waves in a shallow basin is

studied theoretically and numerically within the nonlinear theory of shallow water. It is shown that this interaction

leads to a change in the phase of propagation of the main wave, which is forced to propagate along the

flow induced by the oncoming wave. The estimates of the undisturbed wave height at the time of interaction

agree with the theoretical predictions. The phase shift during the interaction of undisturbed waves is sufficiently

small, but becomes noticeable in the case of the propagation of breaking waves.

Tsunami forecast possibilities for areas with a small base of historical tsunamis have been discussed using the Probabilistic Tsunami Hazard Assessment (PTHA) method, which is based on a statistical analysis of a sufficiently large number of real and predictive earthquakes with a subsequent calculation of possible tsunami waves. This method has been used for a long-term tsunami hazard assessment on the Mediterranean coast of Egypt. The predicted wave heights have been shown to vary along the coastline due to the inhomogeneity of the coastal topography and specific features of the tsunami radiation pattern in the sea. The predicted wave heights for 1000 years vary in the range between 0.8 and 3.4 m.

The nonlinear problem of run-up of a long wave on a plane beach in presence of a tide is solved within nonlinear shallow water theory using the Carrier–Greenspan approach. An exact solution to the nonlinear problem for the wave run-up height is found as a function of the incident wave amplitude. The influence of the tide on the characteristics of wave run-up on a beach is studied.

Data from a field survey of the 2011 Tohoku-oki tsunami in the Sanriku area of Japan is used to plot the distribution function of runup heights along the coast. It is shown that the distribution function can be approximated by a theoretical log-normal curve. The characteristics of the distribution functions of the 2011 event are compared with data from two previous catastrophic tsunamis (1896 and 1933) that occurred in almost the same region. The number of observations during the last tsunami is very large, which provides an opportunity to revise the conception of the distribution of tsunami wave heights and the relationship between statistical characteristics and the number of observed runup heights suggested by Kajiura (1983) based on a small amount of data on previous tsunamis. The distribution function of the 2011 event demonstrates the sensitivity to the number of measurements (many of them cannot be considered independent measurements) and can be used to determine the characteristic scale of the coast, which corresponds to the statistical independence of observed wave heights.

Approaches to modeling a tsunami of meteoric origin are discussed. A brief overview of the asteroid and meteorite danger to the Earth is given. Formulas assessing the parameters of the tsunami caused by an asteroid entering the water are derived. The results of the numerical simulation of the effect of the angle of entry of the body into water on the characteristics of the resulting waves in the near field are given. The model based on the Navier–Stokes equations for multiphase flows with a free surface is used in calculations. The dimensions of perturbation are studied and the regularities of changes in the parameters of the source are discovered.

One of the key advances in genome assembly that has led to a significant improvement in contig lengths has been improved algorithms for utilization of paired reads (mate-pairs). While in most assemblers, mate-pair information is used in a post-processing step, the recently proposed Paired de Bruijn Graph (PDBG) approach incorporates the mate-pair information directly in the assembly graph structure. However, the PDBG approach faces difficulties when the variation in the insert sizes is high. To address this problem, we first transform mate-pairs into edge-pair histograms that allow one to better estimate the distance between edges in the assembly graph that represent regions linked by multiple mate-pairs. Further, we combine the ideas of mate-pair transformation and PDBGs to construct new data structures for genome assembly: pathsets and pathset graphs.

Papers about natural protection territories

Many environmental stimuli present a quasi-rhythmic structure at different timescales that the brain needs to decompose and integrate. Cortical oscillations have been proposed as instruments of sensory de-multiplexing, i.e., the parallel processing of different frequency streams in sensory signals. Yet their causal role in such a process has never been demonstrated. Here, we used a neural microcircuit model to address whether coupled theta–gamma oscillations, as observed in human auditory cortex, could underpin the multiscale sensory analysis of speech. We show that, in continuous speech, theta oscillations can flexibly track the syllabic rhythm and temporally organize the phoneme-level response of gamma neurons into a code that enables syllable identification. The tracking of slow speech fluctuations by theta oscillations, and its coupling to gamma-spiking activity both appeared as critical features for accurate speech encoding. These results demonstrate that cortical oscillations can be a key instrument of speech de-multiplexing, parsing, and encoding.

Neuronal nicotinic acetylcholine receptors (NNRs) of the α7 subtype have been shown to contribute to the release of dopamine in the nucleus accumbens. The site of action and the underlying mechanism, however, are unclear. Here we applied a circuit modeling approach, supported by electrochemical in vivo recordings, to clarify this issue. Modeling revealed two potential mechanisms for the drop in accumbal dopamine efflux evoked by the selective α7 partial agonist TC-7020. TC-7020 could desensitize α7 NNRs located predominantly on dopamine neurons or glutamatergic afferents to them or, alternatively, activate α7 NNRs located on the glutamatergic afferents to GABAergic interneurons in the ventral tegmental area. Only the model based on desensitization, however, was able to explain the neutralizing effect of coapplied PNU-120596, a positive allosteric modulator. According to our results, the most likely sites of action are the preterminal α7 NNRs controlling glutamate release from cortical afferents to the nucleus accumbens. These findings offer a rationale for the further investigation of α7 NNR agonists as therapy for diseases associated with enhanced mesolimbic dopaminergic tone, such as schizophrenia and addiction

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.