### Article

## Observation of a narrow pentaquark state, Pc(4312)+, and of two-peak structure of the Pc(4450)+

A narrow pentaquark state, Pc(4312)+, decaying to J/ψp, is discovered with a statistical significance of 7.3σ in a data sample of Λ0b→J/ψpK− decays, which is an order of magnitude larger than that previously analyzed by the LHCb Collaboration. The Pc(4450)+ pentaquark structure formerly reported by LHCb is confirmed and observed to consist of two narrow overlapping peaks, Pc(4440)+ and Pc(4457)+, where the statistical significance of this two-peak interpretation is 5.4σ. The proximity of the Σ+c¯D0 and Σ+c¯D*0 thresholds to the observed narrow peaks suggests that they play an important role in the dynamics of these states.

A search for the lepton-flavour violating decay D0 → e ±µ ∓ is made with a dataset corresponding to an integrated luminosity of 3.0 fb−1 of proton-proton collisions at centre-of-mass energies of 7 TeV and 8 TeV, collected by the LHCb experiment. Candidate D0 mesons are selected using the decay D∗+ → D0π + and the D0 → e ±µ ∓ branching fraction is measured using the decay mode D0 → K−π + as a normalisation channel. No significant excess of D0 → e ±µ ∓ candidates over the expected background is seen, and a limit is set on the branching fraction, B(D0 → e ±µ ∓) < 1.3×10−8 , at 90% confidence level. This is an order of magnitude lower than the previous limit and it further constrains the parameter space in some leptoquark models and in supersymmetric models with R-parity violation.

During LHC Run 1, the LHCb experiment recorded around 1011 collision events. This paper describes Event Index — an event search system. Its primary function is to quickly select subsets of events from a combination of conditions, such as the estimated decay channel or number of hits in a subdetector. Event Index is essentially Apache Lucene [1] optimized for read-only indexes distributed over independent shards on independent nodes.

The dynamics of a two-component Davydov-Scott (DS) soliton with a small mismatch of the initial location or velocity of the high-frequency (HF) component was investigated within the framework of the Zakharov-type system of two coupled equations for the HF and low-frequency (LF) fields. In this system, the HF field is described by the linear Schrödinger equation with the potential generated by the LF component varying in time and space. The LF component in this system is described by the Korteweg-de Vries equation with a term of quadratic influence of the HF field on the LF field. The frequency of the DS soliton`s component oscillation was found analytically using the balance equation. The perturbed DS soliton was shown to be stable. The analytical results were confirmed by numerical simulations.

Radiation conditions are described for various space regions, radiation-induced effects in spacecraft materials and equipment components are considered and information on theoretical, computational, and experimental methods for studying radiation effects are presented. The peculiarities of radiation effects on nanostructures and some problems related to modeling and radiation testing of such structures are considered.

This volume presents new results in the study and optimization of information transmission models in telecommunication networks using different approaches, mainly based on theiries of queueing systems and queueing networks .

The paper provides a number of proposed draft operational guidelines for technology measurement and includes a number of tentative technology definitions to be used for statistical purposes, principles for identification and classification of potentially growing technology areas, suggestions on the survey strategies and indicators. These are the key components of an internationally harmonized framework for collecting and interpreting technology data that would need to be further developed through a broader consultation process. A summary of definitions of technology already available in OECD manuals and the stocktaking results are provided in the Annex section.