### Article

## On Nonstationary Solutions to Yang-Mills Equations

Plane periodic oscillations of an infinitely deep fluid are studied in the case of a nonuniform pressure distribution over its free surface. The fluid flow is governed by an exact solution of the Euler equations in the Lagrangian variables. The dynamics of an oscillating standing soliton are described, together with the scenario of the soliton evolution and the birth of a wave of an anomalously large amplitude against the background of the homogeneous Gerstner undulation (freak wave model). All the flows are nonuniformly vortical.

It is shown that the discrete frequency spectrum of the plane hydrodynamic flow of an ideal incompressible liquid with localized trajectories of liquid particles can contain only one harmonic, two harmonics, or an infinite number of the latter.

A vortical model of breather overturning on deep water is proposed. The action of wind is simulated by nonuniform pressure on the free surface. The fluid motion is described by an exact solution of 2D hydrodynamic equations for an inviscid fluid in Lagrangian variables. Fluid particles rotate in circles of different radii. Formation of contraflexure points on the breather profile is studied. The mechanism of wave breaking and the role of flow vorticity are discussed.

Chemical reactions in a porous medium are found in many natural phenomena and technological processes. Reactive substances dissolved in groundwater can significantly change the soil strength. The precipitate formed as a result of the reaction changes the porous medium structure and affects the porosity and permeability. A one-dimensional model of the reaction of two reagents in a homogeneous porous medium with a linear reaction function is considered. The model includes the mass balance equations of each reagent and precipitate, and the kinetic equation of precipitate growth. It is assumed that the precipitate is stationary and the growth rate of the precipitate is proportional to the reagents’ concentration. A carrier fluid with constant concentration reagents is injected at the empty porous medium entrance. The reaction front moves in a porous medium at a constant speed. The exact solution to the problem is constructed by eliminating the unknown functions and lowering the equations’ order. A Riemann invariant that relates the concentration of sediment and reagents to the system’s characteristics was found. The reaction’s numerical simulation is performed. It is shown that, for a long time, the reagents’ concentrations and the precipitate tend to final limit values. Sediment profiles always decrease monotonously, and the type of the profiles’ convexity changes.

The dynamics of a two-component Davydov-Scott (DS) soliton with a small mismatch of the initial location or velocity of the high-frequency (HF) component was investigated within the framework of the Zakharov-type system of two coupled equations for the HF and low-frequency (LF) fields. In this system, the HF field is described by the linear Schrödinger equation with the potential generated by the LF component varying in time and space. The LF component in this system is described by the Korteweg-de Vries equation with a term of quadratic influence of the HF field on the LF field. The frequency of the DS soliton`s component oscillation was found analytically using the balance equation. The perturbed DS soliton was shown to be stable. The analytical results were confirmed by numerical simulations.

Radiation conditions are described for various space regions, radiation-induced effects in spacecraft materials and equipment components are considered and information on theoretical, computational, and experimental methods for studying radiation effects are presented. The peculiarities of radiation effects on nanostructures and some problems related to modeling and radiation testing of such structures are considered.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.