• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Article

A Weyl Module Stratification of Integrable Representations

Communications in Mathematical Physics. 2019. Vol. 368. No. 1. P. 113-141.
Kato S., Loktev S.

We construct a filtration on an integrable highest weight module of an affine Lie algebra whose adjoint graded quotient is a direct sum of global Weyl modules. We show that the graded multiplicity of each global Weyl module there is given by the corresponding level-restricted Kostka polynomial. This leads to an interpretation of level-restricted Kostka polynomials as the graded dimension of the space of conformal coinvariants. In addition, as an application of the level one case of the main result, we realize global Weyl modules of current algebras of type ADEADE in terms of Schubert subvarieties of thick affine Grassmanian, as predicted by Boris Feigin.