### Article

## Coulomb branches of 3d N = 4 quiver gauge theories and slices in the affine Grassmannian

This is a companion paper of [Part II]. We study Coulomb branches

of unframed and framed quiver gauge theories of type ADE. In the

unframed case they are isomorphic to the moduli space of based ra-

tional maps from P^1 to the flag variety. In the framed case they are

slices in the affine Grassmannian and their generalization. In the

appendix, written jointly with Joel Kamnitzer, Ryosuke Kodera,

Ben Webster, and Alex Weekes, we identify the quantized Coulomb

branch with the truncated shifted Yangian.

We propose a conjectural construction of various slices for double affine Grass- mannians as Coulomb branches of 3-dimensional N = 4 supersymmetric affine quiver gauge theories. It generalizes the known construction for the usual affine Grassman- nians, and makes sense for arbitrary symmetric Kac-Mody algebras.

This is the third paper in a series which describes a conjectural analogue of the affine Grassmannian for affine Kac-Moody groups (also known as the double affine Grassmannian). The present paper is dedicated to the description of the conjectural analogue of the convolution diagram for the double affine Grassmannian and affine zastava.

We study a coproduct in type A quantum open Toda lattice in terms of a coproduct in the shifted Yangian of sl2. At the classical level this corresponds to the multiplication of scattering matrices of euclidean SU(2) monopoles. We also study coproducts for shifted Yangians for any simply-laced Lie algebra.

These are (somewhat informal) lecture notes for the CIME summer school “Geometric Representation Theory and Gauge Theory” in June 2018. In these notes we review the constructions and results of Braverman et al. (Adv Theor Math Phys 22(5):1017–1147, 2018; Adv Theor Math Phys 23(1):75–166, 2019; Adv Theor Math Phys 23(2):253–344, 2019) where a mathematical definition of Coulomb branches of 3d N = 4 quantum gauge theories (of cotangent type) is given, and also present a framework for studying some further mathematical structures (e.g. categories of line operators in the corresponding topologically twisted theories) related to these theories.

We study the connection between the affine degenerate Grassmannians in type A, quiver Grassmannians for one vertex loop quivers and affine Schubert varieties. We give an explicit description of the degenerate affine Grassmannian of type GL(n) and identify it with semi-infinite orbit closure of type A_{2n-1}. We show that principal quiver Grassmannians for the one vertex loop quiver provide finite-dimensional approximations of the degenerate affine Grassmannian. Finally, we give an explicit description of the degenerate affine Grassmannian of type A_1^{(1)}, propose a conjectural description in the symplectic case and discuss the generalization to the case of the affine degenerate flag varieties.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.