### Article

## Existence Conditions of Negative Eigenvalues in the Regular Sturm–Liouville Boundary Value Problem and Explicit Expressions for Their Number

For the regular Sturm–Liouville boundary value problem with general nonseparated selfadjoint

boundary conditions, conditions for the existence of zero and negative eigenvalues and expressions

for their number are obtained. The conditions are expresses in a closed form, and the coefficient

functions of the original equation appear in these conditions indirectly through a single numerical

characteristic.

We present several applications of mode matching methods in spectral and scattering problems. First, we consider the eigenvalue problem for the Dirichlet Laplacian in a finite cylindrical domain that is split into two subdomains by a ‘perforated’ barrier. Using rather elementary methods, we prove that the first eigenfunction is localized in the larger subdomain, that is, its L2L2 norm in the smaller subdomain can be made arbitrarily small by setting the diameter of the ‘holes’ in the barrier small enough. This result extends the well-known localization of Laplacian eigenfunctions in dumbbell domains. We also discuss an extension to noncylindrical domains with radial symmetry. Second, we study a scattering problem in an infinite cylindrical domain with two identical perforated barriers. If the holes are small, there exists a low frequency at which an incident wave is almost fully transmitted through both barriers. This result is counterintuitive as a single barrier with the same holes would fully reflect incident waves with low frequencies.

In this work we generalize the Jacobi--Davidson method to the case when the eigenvector can be reshaped into a low-rank matrix. In this setting the proposed method inherits the advantages of the original Jacobi--Davidson method, has lower complexity, and requires less storage. We also introduce a low-rank version of the Rayleigh quotient iteration which naturally arises in the Jacobi--Davidson method.

A fluid flow along a semi-infinite plate with small periodic irregularities on the surface is considered for large Reynolds numbers. The boundary layer has a double-deck structure: a thin boundary layer (“lower deck”) and a classical Prandtl boundary layer (“upper deck”). The aim of this paper is to prove the existence and uniqueness of the stationary solution of a Rayleigh-type equation, which describes oscillations of the vertical velocity component in the classical boundary layer.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.