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Abstract—For the regular Sturm–Liouville boundary value problem with general nonseparated self-
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characteristic.

Keywords: Sturm–Liouville equation, boundary value problem, eigenvalue.
DOI: 10.1134/S096554251812014X

1. INTRODUCTION
A string or a rod with free boundary conditions provide an example of vibrating systems that have a zero

eigenvalue. The corresponding eigenform is a uniform motion of the system as a rigid body. It was men-
tioned in [1, Chapter I, §2.4] that, in the case when the directions of forces acting at the endpoints accord-
ing to the boundary conditions are the same as the direction of motion of the corresponding endpoint, the
system can have negative eigenvalues. In various physical statements, the problem of estimating the num-
ber of negative eigenvalues is considered in many studies, especially for the Schrödinger equation (see [2]
and the papers citing it). The purpose of the current paper is to derive explicit conditions in terms of the
potential energy (elastic characteristics) of the system and boundary conditions that enable one to detect
the existence and find out the number of negative and zero eigenvalues in the problem indicated in the title
of the paper. The closest paper to this one is [3], in which for the Sturm–Liouville problem with separated
boundary conditions but with more general coefficients of the equation, relations between the number of
negative eigenvalues and other indexes of the Sturm–Liouville operator were obtained.

The paper is organized as follows. In section 2, the specific case of separated boundary conditions is
considered. This case is analyzed in a special section for a number of reasons. Firstly, the logic of the anal-
ysis is clearly seen already in this case. This logic can be described by the following sequence of steps:

(1) if the spectral parameter  is zero, all equations—the original one and the equations of the transfer
method that transfer the boundary conditions—are solved explicitly;

(2) the limiting position (as ) of the subspace corresponding to the boundary condition trans-
ferred to the other end of the interval can be found;

(3) the transfer result monotonically depends on : in the case of separated boundary conditions, the
dependence is interpreted in the direct sense of the word as the angle in the Prüfer transformation; in the
more general case, this dependence is interpreted in a more special sense;

(4) the problem solution is reduced to counting signatures.
Secondly, the case of separated boundary conditions does not use sophisticated techniques—in

essence, only the Prüfer transformation is used. Thirdly, even for this classical case, it seems that some of
the results obtained in Section 2 are new, and they have a meaningful physical interpretation.

Section 3 contains the main results of the paper. First, a summary of necessary results concerning
Grassmann varieties formed by linear Lagrangian subspaces and representation of self-adjoint boundary
problems for (systems) of ordinary differential equations in standard Hamiltonian form is given. Next, the
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propositions of Section 2 are obtained for the general case. From the very beginning and in the course of
the presentation, a physical interpretation of results is given. In the last section, conclusions are drawn,
and additional issues are discussed.

2. THE CASE OF SEPARATED BOUNDARY CONDITIONS
2.1. Statement of the Problem

We consider the equation

(1)

Here , , , and

The boundary conditions have the form

(2a)

(2b)

The angles  and  in (2) may be chosen up to a multiple of . To investigate the vibratory properties
of the solutions to Eq. (1), it is convenient to use the ranges  and ; to separate the positive
and nonpositive eigenvalues, it is more convenient to use the ranges  and .
Below, we use both ranges, depending on the situation.

Equation (1) describes, in particular, the following problems (see [4]):
(1) small transverse vibrations of a string (in this case, );
(2) small longitudinal vibrations of a rod;
(3) small torsional vibrations of a rod.
The physical interpretation can be given for each of these problems; below, we will use problem (2).

In this case, the physical meaning of the quantities appearing in (1), (2), and some related quantities is as
follows:

 is the displacement of the point  of the rod,
 is the modulus of elasticity multiplied by the area of the rod cross section,
 is the linear density of the rod,

 is the strain (according to Hooke’s law);

is the potential energy of stressed state of the rod.
To simplify the notation and interpretation of the boundary conditions, we will first consider the case

of “general position” in which  in (2). The other cases (fixed and free ends) can
be easily analyzed individually, and they will be taken into account in the final classification.

Condition (2a) corresponds to the elastic attachment of the rod left end, in which case its displacement
 causes the constraint to react with the force . For , the force acts in

the direction opposite to the displacement (below, such a constraint will be called stable); in the case
 the force acts in the same direction as the displacement (unstable constraint). At the right

end of the rod, the sign must be reversed —  corresponds to the unstable constraint and
 corresponds to the stable constraint.

The potential energy of constraints (the work done by the constraints when the rod ends are displaced
to the positions  and ) is
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Introduce the notation

(3)

The physical meaning of  is the displacement of the free rod end under the action of the unit force
applied to it when the other end is fixed; this is actually the quantity reciprocal of the rod rigidity (com-
pliance in the terminology of [5]).

It is known that problem (1), (2) can have none, one, or two negative or zero eigenvalues (e.g., see [6],
Section 4.3).

2.2. Conditions of existence and Expressions for the Number of Zero and Negative Eigenvalues
Below, we will use the Prüfer transformation and the corresponding equation of differential transfer

(4)

Let  be the result of the transfer of Condition (2a) to the point  according to Eq. (4). It is
known (e.g., see [7], Chapter 11, Theorem 4.1) that, if , then

(1)  monotonically increases in ;
(2)  as .
It is clear that solution (4) always increases when crossing the point ,  .
For , the point  remains fixed relative to Eq. (4). In this case, the mapping 

takes the interval  into itself, and it is strictly monotone on this interval.
Lemma 1. Let  and let  be the solution to Eq. (1) satisfying the conditions  and

. Then, ,

Given this and the properties of the function  of , conclusions about the existence and number
of zero and negative eigenvalues in problem (1), (2) can be immediately drawn.

Proposition 1. Depending on mutual arrangement of the angles  and , the following propositions hold.
1. , , i.e., both constraints are stable or an end is fixed. In addition, one (but not

both) inequality may be nonstrict (one free end). Then, problem (1), (2) has no zero and negative eigenvalues.
2. , , i.e., the constraint at the left end is unstable or this end is free, and the

constraint at the right end is stable or this end free or it is fixed. Then, if , then there is one
negative eigenvalue; if , then there is a single zero eigenvalue; and if ,
then there are no zero and negative eigenvalues. In this case, we assume that  for the free end,
and .

3. , , i.e., the constraint at the left end is stable or this end is free or it is fixed, and
the constraint at the right end is unstable or this end free (case 3 is symmetric to case 2). If ,
then there is one negative eigenvalue; if , then there is a single zero eigenvalue; and if,

, then there are no zero and negative eigenvalues. In this case, we assume that
 for the free end, and .

4. , , i.e., both constraints are unstable. Then, if , then there
are two negative eigenvalues; if , then there is one zero and one negative eigenvalue; and if

, then there is a single negative eigenvalue.
Remark. In one way or another, these conditions must be known; however, in the literature (e.g., see

[8, Section 5.8]), only a part of all possible cases is considered.
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The analysis of conditions in these cases shows that, for instance, the existence of at least one negative
eigenvalue is not reduced to a single inequality criterion.

Case 2 (or 3) deserves a special remark. If (for  and  in the interval indicated above) , then the
absolute value of the negative rigidity of the unstable constraint at the left end is less than the positive
rigidity at the right end; i.e., the destabilizing influence is weaker that the stabilizing influence. However,
if the rod is soft (  is large) in this case, then a negative eigenvalue does nevertheless exist.

2.3. Energy Interpretation
Suppose that the rod is put in the position  by the action of external forces (distributed along the

rod length or applied at its ends) (clearly,  does not necessarily satisfy the boundary conditions (2)).
Then, the total potential energy of the rod and the constraints is

(5)

Proposition 2. The number of negative (respectively, zero) eigenvalues of problem (1), (2) equals the num-
ber of negative (respectively, zero) characteristic numbers of the quadratic form (5).

This proposition is a consequence of the classical result of the theory of operators in Hilbert space
(see [9, Theorem 13' and [10, Section 82, Theorem 2]).

Another possible physical interpretation distinguishes only interesting eigenvalues.
Proposition 3. The number of negative (respectively, zero) eigenvalues of problem (1), (2) equals the num-

ber of such eigenvalues in the vibrating system with a finite number of degrees of freedom designed as follows:
the rod has the same elastic properties but is weightless, the boundary conditions are the same, and two arbi-
trary positive masses are attached at the ends of the rod.

Proof. The matrix of potential energy of the system is positive definite; therefore, the number of
eigenvalues is determined by the potential energy. Consider the case of general position
(  in (2)); the Dirichlet and Neumann boundary conditions at one or both ends
are easily investigated individually. The matrix of potential energy is

Its characteristic equation has the form

(6)
The free term in (6) is

Then, we can examine various cases as in Proposition 1. Only one subcase of Case 4 in which
 needs special consideration. In this vase,  and

due to the arithmetic mean–geometric mean inequality.

3. GENERAL BOUNDARY CONDITIONS
3.1. Statement of the Problem and Properties of Lagrangian Grassmannians

Without loss of generality, we assume that Eq. (1) is defined on the interval . In the general
case, the nonseparated boundary conditions are written in the form

(7)

where  is a  full rank matrix.
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Using Moszyński’s technique [11], the problem is reduced to the boundary value problem with sepa-
rated boundary conditions in double dimension:

this results in the following system with separated boundary conditions in standard Hamiltonian form:

(8)

(9)

(10)

In order for the boundary value problem to be self-adjoint (in this paper we consider exactly such prob-
lems), it is necessary and sufficient that the differential expression is self-adjoint (this is true for the
Sturm–Liouville operator) and the boundary conditions are also self-adjoint. The latter property requires
special attention. In [12, Section I.1.6; 13, §9; 14; 15], the self-adjoint property of coupled boundary con-
ditions is defined by four formally different methods; in [12], the definition involves not only the bound-
ary conditions themselves but also the differential expression. The meaning in all the cases is the same: the
operator determined by the differential expression and the boundary conditions must be symmetric on its
domain; in other words, the out-of-integral terms in the Lagrange formula must vanish for the functions
satisfying the boundary conditions. We will use the definition of this concept in the form that is close to
[13] (up to the notation and the rearrangement of the components of vectors).

Proposition 4. The boundary conditions (7) are self-adjoint if and only if the plane  that they determine
in the space of vectors  has the following property:  in

the sense of the standard inner product in .
The proof is based on direct verification by integrating by parts.
Examples of self-adjoint boundary conditions are the separated boundary conditions considered above

and periodicity conditions. Examples of non-self-adjoint boundary conditions are the conditions
 and  for the equation . Every complex  is an eigenvalue of this

boundary value problem (see [16], Chapter 5, problem 5.2).
The planes possessing the property formulated in Proposition 4 are called Lagrangian planes. Below,

we will need some other concepts and facts related to these objects, and they are briefly described here
(see [17, 18]). The set of (nonoriented) Lagrangian -dimensional planes in  forms a connected com-
pact and for  nonorientable manifold of dimension , which is called the Lagrangian Grass-
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mannian . The standard set of maps in  can be obtained in the following way. Let ,
 be an arbitrary partition of the set of indexes  into two subsets. The map  is formed

by the Lagrangian planes that can be represented by the linear hull of the columns of the following 
matrix: its rows  are formed by an identity matrix, and the other rows are formed by an arbitrary
symmetric (up to the corresponding permutation of rows) matrix. Below, we will use the following two
maps in :

(11)

and

(12)

where  are arbitrary real numbers. The Lagrangian planes  and  in  are said to be
transversal if  or, which is equivalent, if . The trail of the plane  is the set of
planes in  that have a nontrivial intersection with  (are not tansversal to ). For brevity, we will
identify the self-adjoint boundary condition and the element  determined by it. For instance,
map (11) consists of the planes that are transversal to the Neumann conditions, and it is the complement
of the trail of the Neumann conditions in ; map (12) contains the planes transversal to the Dirichlet
conditions.

If a Lagrangian plane  is determined at the point  (e.g., using boundary conditions), then the
set of values of the solution to any other Hamiltonian system (in particular, system (8)) for every other 
with the Cauchy data in  at  also forms a Lagrangian plane; therefore, as  moves on , we have
the transfer of the boundary conditions on .

3.2. Monotonicity Property of the Result o Transferring the Boundary Condition

Denote by  the result of transferring the boundary condition (9) via system (8) to the point .
Below, we will use the symbol  in the following sense: for the matrices  and  of the vertical size ,

 if the linear hulls of the columns of  and  are identical; for the object , the notation
 means that the corresponding subspaces are identical.

Proposition 5:

where

, compare with (3).

Proof. The first relation follows from Lemma 1 applied two times—to the left and to the right halves of
the rod. The second equivalence is obvious.
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Proposition 6:

i.e., to the Dirichlet conditions.
Remark. This proposition does not automatically follow from the analogous fact about a single Sturm–

Liouville equation (see Section 2.1) because the corresponding solutions to system (8) stick together as
.

Proof. Let, for ,  be the solution to the equation

on the interval  satisfying the conditions  and , and let  be the
solution to the same equation satisfying the conditions  and . Then, repre-
senting the transfer of the boundary condition in terms of the fundamental system of solutions to (8), we
obtain

(13)

To shorten the notation, we denote the elements of matrix (13) by

(14)

The properties of solutions to the Sturm–Liouville equation and the dependence of the Prüfer angle
on  (see Section 2.1) imply that

1. All the quantities  are positive for  and tend to  as ;
2.  as ;
3. ,  for ;

4.  due to the properties of Wronski’s determinant.
Multiply matrix (14) by the nonsingular matrix

on the right. This operation does not change the linear hull of the columns. As a result, we obtain
(for brevity, we omit the dependence on )

and all elements in the lower half of this matrix are  as .
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Proposition 7. 1.  monotonically depends on  in the following sense:
(1) for , the plane  belongs to the map  (see (12)), and the upper half of matrix (12) is a strictly

decreasing matrix function of  (conventionally, for symmetric matrices  and ,  if 
for every vector );

(2) in this case, this  matrix tends to  as  in the sense that it becomes greater than any pre-
defined symmetric matrix.

Proof. The monotonicity in  is known (e.g., it was proved using somewhat different terms and nota-
tion in [19], Theorem 10.2.3 and in [20], Theorem 4).

Proof of item (2). Again, Multiply matrix (14) by the nonsingular matrix

on the right (again, we omit the dependence on ) to obtain

(15)

the diagonal elements in the upper half of the matrix tend to  as , and the off-diagonal ele-
ments tend to zero.

3.3. The Case when the Boundary Conditions Are Transversal of the Dirichlet Conditions

Two cases are possible for the boundary conditions (7): the case when the constraints have finite rigid-
ity (it is considered below) and when the boundary conditions contain a component with an infinite rigid-
ity (is considered in the next subsection).

In the first case, the boundary conditions have the form (12). Their physical interpretation is as follows.
In response to the unit displacement of the left end (the third component of the phase vector), a force of
intensity  in the direction of the displacement acts on the left end, and simultaneously a force of intensity

 acts on the right end. Correspondingly, the unit displacement of the right end causes a force of intensity
 to be applied to the right end, and a force of intensity  acting on the left end . Such a mechanical sys-

tem can be easily designed using three springs (maybe with negative rigidity because , , and  are arbi-
trary numbers). A particular case is the Neumann conditions (all three rigidities are zero).

Thus, let the boundary conditions (10) determine in the space of vectors 
the subspace

(16)

where  is an arbitrary symmetric  matrix and  is the identity  matrix. Let in the case 
(see Proposition 7)

where  is a symmetric  matrix depending on the spectral parameter. The following two results are
obvious.

Lemma 2 (see Proposition 5):

Lemma 3. The number  is an eigenvalue of problem (8)–(10) if and only if the matrix  has a zero
eigenvalue. The multiplicity of  is the deficiency of .
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Theorem 1. The number of negative (respectively, zero) eigenvalues of problem (8)–(10) taking into
account their multiplicity equals (also with account of multiplicity) to the number of negative (respectively, zero)
eigenvalues of the matrix .

Remark. Given the data of the original problem (8)–(10), the number of negative and zero eigenvalues
is calculated constructively without solving differential equations.

Proof. Due to Proposition 7, the matrix  monotonically increases as  decreases from  to ,
and all its eigenvalues are positive in the limit. Due to the Courant principle, its eigenvalues also change
monotonically. Therefore, the number of times they pass through zero (or are equal to zero for  if we
deal with zero eigenvalues) equals the corresponding characteristic of the matrix .

The boundary conditions (16) correspond to separated boundary conditions if and only if  is a diag-
onal matrix. In this particular case, Theorem 1 must give the same result as Proposition 1. Indeed, the
characteristic polynomial of  is (in the notation of Section 2)

and then the standard analysis using Viète's formulas gives the desired result.
In the case under consideration, combinations of parameters may exist under which the problem has a

double zero eigenvalue; this happens when the rod ends are connected by a weightless spring of negative
rigidity  and there are no other constraints. As a result, the rod with such a constraint acquires an
infinitely high compliance, which gives one more, in addition to the motion as a rigid body, dimension of

the eigenspace. The corresponding forms of free motion are  and .

3.4. The Case when the Boundary Conditions Belong to the Trail of the Dirichlet Conditions
The case when the boundary conditions not only belong to the trail but also coincide with the Dirichlet

conditions was considered in Section 2. It remains to examine the situation when the intersection of sub-
space (10) with the subspace

is one-dimensional. It is clear that the Lagrangian subspaces of such a form can be determined by column
matrices of the form

(17)

where  and .
The question is reduced to finding the conditions under which a linear combination of the columns of

matrix (17) belongs to the space , which for this purpose can be conveniently represented in form (15).
It is clear that the intersection of subspaces (17) and (15) can be one-dimensional at maximum; i.e., the
eigenvalues can be only simple. Furthermore, the coefficient multiplying the second column in the rep-
resentation of the intersection vector by a linear combination of the columns of (17) must be distinct from
zero; therefore, it can be set equal to . Then, the coefficients multiplying the columns of (15) are 
and , respectively. Consider two first components of the corresponding linear combination of the col-
umns of (15) (we again use notation (14) and omit the dependence on ):

As  decreases from  to , the vector  varies as follows. Starting from

 at , it then moves in such a way that the inner product of the vectors

 and  strictly increases and tends to . Indeed, this inner product equals the value of
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the quadratic form determined by the upper half of matrix (15) on the vector , and its monotonicity
in  is a consequence of the monotonicity of the matrix itself (see Proposition 7). Therefore, the existence
of a negative or zero eigenvalue (in total not more than one with account to multiplicity) depends on which
side of the straight line

is the point  (when the direction of the normal  is positive).
Thus, we have proved the following result.
Theorem 2. For the boundary condition belonging to the trail of the Dirichlet conditions, problem (8)–(10)

can have one zero or negative value or no such eigenvalues at all. The zero eigenvalue exists if
, and a negative eigenvalue exists if .

This case includes the periodicity condition when  and  in (17). Then, Theorem 2
gives the known result: the problem has a simple zero eigenvalue and has no negative eigenvalues.

Consider an example of physical interpretation of the problem with the boundary conditions (17),
where we put  and  (a generalization of antiperiodic conditions). The structure of
the mechanical system is as follows: there is a kinematic constraint between the ends of the rod

, and its ends are connected by a weightless spring of rigidity . Then, Theorem 2
shows that the system has a zero eigenvalue at the negative rigidity  and a negative eigenvalue if
the rigidity satisfies .

Generalization of Propositions 2 and 3 for the case of boundary conditions of general form can be
proved similarly. The difference is reduced to the fact that the representation of the constraint energy (the
second term in (5)) does not have a diagonal form but is

and the analog of the potential energy matrix in Proposition 3 is the matrix  considered above.

4. CONCLUSIONS
Spectral properties of the linear vibrating system are determined by three sets of its parameters: (1) the

quadratic form of potential energy, (2) the quadratic form of kinetic energy, and (3) by the linear forms of
boundary conditions. The conditions for the existence of negative and zero eigenvalues of the system,
which are responsible for its instability, are independent of the distribution of masses and are determined
only by the first and third sets of parameters. In this paper, for the regular Sturm–Liouville problem and
boundary conditions of general form, such conditions were obtained in a closed form without solving dif-
ferential equations. It was found that, in the case under examination, the potential energy affects the result
only through one numerical characteristic of the system. It seems that both issues—obtaining explicit
instability conditions and finding aggregated characteristics of the potential energy responsible for the
instability—are of interest for other vibrating systems, including those with a finite number of degrees of
freedom.
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