Article
The influence of complex thermal treatment on mechanical properties of amorphous materials
We study the effect of periodic, spatially uniform temperature variation on mechanical properties and structural relaxation of amorphous alloys using molecular dynamics simulations. The disordered material is modeled via a non-additive binary mixture, which is annealed from the liquid to the glassy state with various cooling rates and then either aged at constant temperature or subjected to thermal treatment. We found that in comparison to aged
samples, thermal cycling with respect to a reference temperature of approximately half the glass transition temperature leads to more relaxed states with lower levels of potential energy. The largest energy decrease was observed for rapidly quenched glasses cycled with the thermal amplitude slightly smaller than the reference
temperature. Following the thermal treatment, the mechanical properties were probed via uniaxial tensile strain at the reference temperature and constant pressure. The numerical results indicate an inverse correlation between the levels of potential energy and values of the elastic modulus and yield stress as a function of the
thermal amplitude.
We investigate the effect of a single heat treatment cycle on the potential energy states and mechanical properties of metallic glasses using molecular dynamics simulations. We consider the three-dimensional binary mixture, which was initially cooled with a computationally slow rate from the liquid state to the solid phase at a temperature well below the glass transition. It was found that a cycle of heating and cooling can relocate the glass to either rejuvenated or relaxed states, depending on the maximum temperature and the loading period. Thus, the lowest potential energy is attained after a cycle with the maximum temperature slightly below the glass transition temperature and the effective cooling rate slower than the initial annealing rate. In contrast, the degree of rejuvenation increases when the maximum temperature becomes greater than the glass transition temperature and the loading period is sufficiently small. It was further shown that the variation of the potential energy is inversely related to the dependence of the elastic modulus and the yield stress as functions of the maximum loading temperature. In addition, the heat treatment process causes subtle changes in the shape of the radial distribution function of small atoms. These results are important for optimization of thermal and mechanical processing of metallic glasses with predetermined properties.
Molecular dynamics study of stress correlations and shear viscosity behavior of the rapidly cooled and re-heated liquid aluminum film is performed. The embedded atom method potential is used at the simulations. The stress correlation behavior is studied in the plane of the film and along the direction normal to the plane. The behavior of the kinematic viscosity and the stress correlationsare compared for cooling and heating process. Using two methods it is shown that the glass transition temperature for the cooling process is higher than for the heating.
Different test methods are described to determine the mechanical properties of materials in the superplastic state. The flow stress depends on strain and strain rate, the structural parameter of the materials, and temperature. The rheology and mechanics of superplastic deformation are discussed. The methods have been checked for reliability and produced good results in testing titanium alloys and constructing mathematical models as part of an order submitted by the company EADS (Airbus). The information given on the test methods and the subsequent approximation of materials’ mechanical properties is of considerable interest for making reliable predictions of the deformation of materials during shaping operations. © 2015 Springer Science+Business Media New York
The Callovo-Oxfordian clay formation (COx) is the potential host rock for long term nuclear waste repository in France. The clayey component of COx consists mostly of illite, smectite and interstratified illite/smectite (I/S) clay minerals. We performed a series of molecular dynamics (MD) computer simulations in order to quantify the molecular scale mechanisms responsible for the adsorption and transport of ions at the hydrated surfaces of illite, smectite, and I/S clays. New structural models of illite, smectite, and I/S allowed us to identify several structurally different adsorption sites at the basal surfaces of all three clay substrates. Adsorption free energy profiles above each individual adsorption site on each clay surface for a wide range of metal cations were then calculated and the metal sorption properties for the three clay surfaces are compared in terms of the preferable sorption sites and their surface distributions, most stable adsorption distances, and free energies of adsorption. The resulting equilibrium constants for surface adsorption and ion exchange were calculated and found in general agreement with available literature data. The observed discrepancies between the exchange energies obtained in the current MD simulations and the values obtained through the interpretation of recent X-ray reflectivity measurements can be attributed to the differences in the description of the exchange reaction equilibria between the experimental conditions and the simplified conditions of our simulations.
The dynamics of a two-component Davydov-Scott (DS) soliton with a small mismatch of the initial location or velocity of the high-frequency (HF) component was investigated within the framework of the Zakharov-type system of two coupled equations for the HF and low-frequency (LF) fields. In this system, the HF field is described by the linear Schrödinger equation with the potential generated by the LF component varying in time and space. The LF component in this system is described by the Korteweg-de Vries equation with a term of quadratic influence of the HF field on the LF field. The frequency of the DS soliton`s component oscillation was found analytically using the balance equation. The perturbed DS soliton was shown to be stable. The analytical results were confirmed by numerical simulations.
Radiation conditions are described for various space regions, radiation-induced effects in spacecraft materials and equipment components are considered and information on theoretical, computational, and experimental methods for studying radiation effects are presented. The peculiarities of radiation effects on nanostructures and some problems related to modeling and radiation testing of such structures are considered.
This volume presents new results in the study and optimization of information transmission models in telecommunication networks using different approaches, mainly based on theiries of queueing systems and queueing networks .
The paper provides a number of proposed draft operational guidelines for technology measurement and includes a number of tentative technology definitions to be used for statistical purposes, principles for identification and classification of potentially growing technology areas, suggestions on the survey strategies and indicators. These are the key components of an internationally harmonized framework for collecting and interpreting technology data that would need to be further developed through a broader consultation process. A summary of definitions of technology already available in OECD manuals and the stocktaking results are provided in the Annex section.