### Article

## The Physical and Geometric Properties of Human Transposon Stem–Loop Structures under Natural Selection

Secondary RNA structures play an important role in transposition, in particular, in RNA recog- nition by transposon proteins. Previously, we found a conserved structure at the 3'-end of human transposons and proposed a hypothesis about the role of this structure in transposition. Although there is no similarity at the sequence level, the conserved position of this structure points to the fact that structural properties occur that are under positive natural selection. In this paper, the physical and geometric properties of stem-loop structures at the 3'-end of human transposons are identified and compared with properties of the structures of other genome regions. Each stem-loop structure was characterized by a set of ten characteristics: the Gibbs free energy, enthalpy, entropy, hydrophilicity, Shift, Slide, Rise, Tilt, Roll, and Twist. A model has been built using machine-learning methods, which recognizes stem-loop structures according to their physical and geo- metric characteristics with 94% accuracy. The most important parameters in the recognition model are hydrophilicity, enthalpy, Rise, and Twist. These properties of transposon structure are thought to be under positive natural selection.

Properties of Erdos measure and the invariant Erdos measure for the golden ratio and all values of the Bernoulli parameter are studies. It is proved that a shift on the two-sided Fibonacci compact set with invariant Erdos measure is isomorphic to the integral automorphism for a Bernoulli shift with countable alphabet. An effective algorithm for calculating the entropy of an invariant Erdos measure is proposed. It is shown that, for certain values of the Bernulli parameter, the algorithm gives the Hausdorff dimension of an Erdos measure to 15 decimal places.

The paper deals with the problems of creating and tuning a system of automated anaphora resolution for Russian. Such a system is introduced, combining rule-based and machine learning approaches. It shows F-measure from 0.51 to 0.59. Freeling serves as an underlying morphological layer and an account of its quality is given, with its influence on anaphora resolution workflow. The anaphora resolution system itself is available to download and use, coming with online demo.

The volume contains the abstracts of the 12th International Conference "Intelligent Data Processing: Theory and Applications". The conference is organized by the Russian Academy of Sciences, the Federal Research Center "Informatics and Control" of the Russian Academy of Sciences and the Scientific and Coordination Center "Digital Methods of Data Mining". The conference has being held biennially since 1989. It is one of the most recognizable scientific forums on data mining, machine learning, pattern recognition, image analysis, signal processing, and discrete analysis. The Organizing Committee of IDP-2018 is grateful to Forecsys Co. and CFRS Co. for providing assistance in the conference preparation and execution. The conference is funded by RFBR, grant 18-07-20075. The conference website http://mmro.ru/en/.

Properties of Erdos measure and the invariant Erdos measure for the golden ratio and all values of the Bernoulli parameter are studies. It is proved that a shift on the two-sided Fibonacci compact set with invariant Erdos measure is isomorphic to the integral automorphism for a Bernoulli shift with countable alphabet.

In an effort to make reading more accessible, an automated readability formula can help students to retrieve appropriate material for their language level. This study attempts to discover and analyze a set of possible features that can be used for single-sentence readability prediction in Russian. We test the influence of syntactic features on predictability of structural complexity. The readability of sentences from SynTagRus corpus was marked up manually and used for evaluation.

This paper is an overview of the current issues and tendencies in Computational linguistics. The overview is based on the materials of the conference on computational linguistics COLING’2012. The modern approaches to the traditional NLP domains such as pos-tagging, syntactic parsing, machine translation are discussed. The highlights of automated information extraction, such as fact extraction, opinion mining are also in focus. The main tendency of modern technologies in Computational linguistics is to accumulate the higher level of linguistic analysis (discourse analysis, cognitive modeling) in the models and to combine machine learning technologies with the algorithmic methods on the basis of deep expert linguistic knowledge.

We present a universal method for algorithmic trading in Stock Market which performs asymptotically at least as well as any stationary trading strategy that computes the investment at each step using continuous function of the side information. In the process of the game, a trader makes decisions using predictions computed by a randomized well-calibrated algorithm. We use Dawid's notion of calibration with more general checking rules and some modication of Kakade and Foster's randomized rounding algorithm for computing the well-calibrated forecasts. The method of randomized calibration is combined with Vovk's method of defensive forecasting in RKHS. Unlike in statistical theory, no stochastic assumptions are made about the stock prices.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Event logs collected by modern information and technical systems usually contain enough data for automated process models discovery. A variety of algorithms was developed for process models discovery, conformance checking, log to model alignment, comparison of process models, etc., nevertheless a quick analysis of ad-hoc selected parts of a journal still have not get a full-fledged implementation. This paper describes an ROLAP-based method of multidimensional event logs storage for process mining. The result of the analysis of the journal is visualized as directed graph representing the union of all possible event sequences, ranked by their occurrence probability. Our implementation allows the analyst to discover process models for sublogs defined by ad-hoc selection of criteria and value of occurrence probability

It is well-known that the class of sets that can be computed by polynomial size circuits is equal to the class of sets that are polynomial time reducible to a sparse set. It is widely believed, but unfortunately up to now unproven, that there are sets in EXPNP, or even in EXP that are not computable by polynomial size circuits and hence are not reducible to a sparse set. In this paper we study this question in a more restricted setting: what is the computational complexity of sparse sets that are *selfreducible*? It follows from earlier work of Lozano and Torán (in: Mathematical systems theory, 1991) that EXPNP does not have sparse selfreducible hard sets. We define a natural version of selfreduction, tree-selfreducibility, and show that NEXP does not have sparse tree-selfreducible hard sets. We also construct an oracle relative to which all of EXP is reducible to a sparse tree-selfreducible set. These lower bounds are corollaries of more general results about the computational complexity of sparse sets that are selfreducible, and can be interpreted as super-polynomial circuit lower bounds for NEXP.

The Handbook of CO₂ in Power Systems' objective is to include the state-of-the-art developments that occurred in power systems taking CO₂ emission into account. The book includes power systems operation modeling with CO₂ emissions considerations, CO₂ market mechanism modeling, CO₂ regulation policy modeling, carbon price forecasting, and carbon capture modeling. For each of the subjects, at least one article authored by a world specialist on the specific domain is included.