• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Article

Norm of Bethe vectors in models with gl(m|n) symmetry

Nuclear Physics B. 2018. Vol. 926. P. 256-278.
Hutsalyuk A., Liashyk A., Pakuliak S., Ragoucy E., Slavnov N.

We study quantum integrable models solvable by the nested algebraic Bethe ansatz and possessing gl(m|n)-invariant R-matrix. We compute the norm of the Hamiltonian eigenstates. Using the notion of a generalized model we show that the square of the norm obeys a number of properties that uniquely fix it. We also show that a Jacobian of the system of Bethe equations obeys the same properties. In this way we prove a generalized Gaudin hypothesis for the norm of the Hamiltonian eigenstates.