### Article

## Asymptotic Analysis of Solutions to a Riccati Equation

A Riccati equation with coefficients expandable into convergent power series in a neighborhood of

infinity is considered. Continuable solutions to equations of this type are studied. Conditions for the expansion

of these solutions into convergent series in a neighborhood of infinity are obtained by methods of power

geometry.

We apply methods from Space Power Geometry to the fifth Painlevé equation. Near infinity we obtained 2 families of elliptic asymptotic forms and 4 families of periodic asymptotic forms of its solutions. All of these families are 2-parameter.

The Riccati equation is considered. Both continuable and noncontinuable solutions of this equation are studied. Asymptotic representations of its solutions are obtained by power geometry methods

The paper contains the results of the study of the asymptotic proprties of solutions with integer-valued asymptotics as wel as of solutions arising from the rapid decrease of the coefficient of the equation. To analize the asymptotic behavior of solutions of the equations, methods of power geometry are used.

Nowadays, production control problems has been widely studied and a lot of valuable approaches have been implemented. Some work addresses the problem of tracking the uncertain demand in case of uncertain production speeds. The uncertainties are described by deterministic inequalities and the performance is analyzed in from of the worst-case scenario. First, simple mathematical models are introduced and the control problem is formulated. In continuous-time, the cumulative output of a manufacturing machine is the integral of the production speed over time. At the same time, the production speed is bounded from below and above, and hence the manufacturing process can be modeled as an integrator with saturated input. Since the cumulative demand (which is the reference signal to track) is a growing function of time, it is natural to consider control policies that involve integration of the mismatch between the current output and current demand. In the simplest consideration it results in models similar to a double integrator closed by saturated linear feedback with an extra input that models disturbances of a different nature. This model is analyzed and particular attention is devoted to the integrator windup phenomenon: lack of global stability of the system solutions that correspond to the same input signal.

The task of designing the control actions for a heavy water reactor under uncertainty changes its parameters considered in the key differential game. The possibility of representing nonlinear dynamics of the object in the form of a system with parameters depending on the state (State Dependent Coefficients) and quadratic functional qualities allow you to go from having to solve a scalar partial differential equation (the Hamilton-Jacobi-Bellman) to the Riccati equation with parameters depending on the state. Feasible solution obtained by applying the min-max method. The results of mathematical modeling system in the shutdown of a nuclear reactor.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.