### Article

## Stress-controlled Poisson ratio of a crystalline membrane: Application to graphene

We demonstrate that a key elastic parameter of a suspended crystalline membrane—the Poisson ratio (PR) ν—is a nontrivial function of the applied stress σ and of the system size L, i.e., ν=νL(σ). We consider a generic two-dimensional membrane embedded into space of dimensionality 2+dc. (The physical situation corresponds to dc=1.) A particularly important application of our results is to freestanding graphene. We find that at a very low stress, when the membrane exhibits linear response, the PR νL(0) decreases with increasing system size L and saturates for L→∞ at a value which depends on the boundary conditions and is essentially different from the value ν=−1/3 previously predicted by the membrane theory within a self-consistent scaling analysis. By increasing σ, one drives a sufficiently large membrane (with the length L much larger than the Ginzburg length) into a nonlinear regime characterized by a universal value of PR that depends solely on dc, in close connection with the critical index η controlling the renormalization of bending rigidity. This universal nonlinear PR acquires its minimum value νmin=−1 in the limit dc→∞, when η→0. With the further increase of σ, the PR changes sign and finally saturates at a positive nonuniversal value prescribed by the conventional elasticity theory. We also show that one should distinguish between the absolute and differential PR (ν and νdiff, respectively). While coinciding in the limits of very low and very high stress, they differ in general: ν≠νdiff. In particular, in the nonlinear universal regime, νdiff takes a universal value which, similarly to the absolute PR, is a function solely of dc (or, equivalently, of η) but is different from the universal value of ν. In the limit of infinite dimensionality of the embedding space, dc→∞(i.e., η→0), the universal value of νdiff tends to −1/3, at variance with the limiting value −1 of ν. Finally, we briefly discuss generalization of these results to a disordered membrane.

In strong magnetic fields, massless electrons in graphene populate relativistic Landau levels with the square-root dependence of each level energy on its number and magnetic field. Interaction-induced deviations from this single-particle picture were observed in recent experiments on cyclotron resonance and magneto-Raman scattering. Previous attempts to calculate such deviations theoretically using the unscreened Coulomb interaction resulted in overestimated many-body effects. This work presents many-body calculations of cyclotron and magneto-Raman transitions in single-layer graphene in the presence of Coulomb interaction, which is statically screened in the random-phase approximation. We take into account self-energy and excitonic effects as well as Landau level mixing, and achieve good agreement of our results with the experimental data for graphene on different substrates. The important role of a self-consistent treatment of the screening is found.

The optical properties of graphene-based structures are discissed. The universal optical absorption in graphene is reviewed. The photonic band structure and transmission of graphene-based photonic crystals are considered. The spectra of plasmon and magnetoplasmon excitations in graphene layers and grapehene nanoribbons (GNR) are analyzed. The localization of the electromagnetic waves in the photonic crystals with defects, which play a role of waveguide, is studied. Properties of plasmons and magnetoplasmons in graphene layers and GNR are reviewed. The surface plasmon amplification by stimulated emission of radiation with the net amplification of surface plasmons in the doped GNR is described. The minimal population inversion per unit area needed for the net amplification of plasmons in a doped GNR is reported. The various applications of graphene for photonics and optoelectronics are reviewed. The tunability of photonic and plasmonic properties of various graphene structures by doping achieved by applying the gate voltage is discussed.

Graphene synthesis technology on substrates is promising, as is compatible with existing CMOS-technology. Knowledge about how to affect the substrate of choice for structural and electronic properties of graphene is important and opens up new opportunities in targeted influence on the properties of this unique material. Specialized measuring system was established to measure the galvanomagnetic characteristics of substrates multigraphene. Its structure and the measurement results are presented in the paper. For surface resistivity measurements we obtained samples were higher than that of natural graphite, but much lower than for samples of colloidal suspensions.

Plasmon spectroscopy methods are highly sensitive to the small volumes of material due to subwavelength localization of light increasing light-matter interaction. Recent research has shown a high potential of plasmon quantum generator (spaser) or amplifier (sped) for sensing in the infrared optical region. Trinitrotoluene (TNT) molecules fingerprints are considered as an example. Basing on Lindblad equations, we implement full quantum mechanical theory of graphene plasmon generator to investigate how a small amount of absorbing atoms influences the spectrum of a graphene spaser. We analyze the optimal type of an active medium, the number of active molecules, and the pump level to achieve the highest sensitivity and show that optimized structure is sensitive to dozens of atoms. Our research is useful for the development of near- and mid-IR spectroscopy based on plasmon quantum amplifier.

We present the theory of many-body corrections to cyclotron transition energies in graphene in strong magnetic field due to Coulomb interaction, considered in terms of the renormalized Fermi velocity. A particular emphasis is made on the recent experiments where detailed dependencies of this velocity on the Landau level filling factor for individual transitions were measured. Taking into account the many-body exchange, excitonic corrections and interaction screening in the static random-phase approximation, we successfully explained the main features of the experimental data, in particular that the Fermi velocities have plateaus when the 0th Landau level is partially filled and rapidly decrease at higher carrier densities due to enhancement of the screening. We also explained the features of the nonmonotonous filling-factor dependence of the Fermi velocity observed in the earlier cyclotron resonance experiment with disordered graphene by taking into account the disorder-induced Landau level broadening.

The dynamics of a two-component Davydov-Scott (DS) soliton with a small mismatch of the initial location or velocity of the high-frequency (HF) component was investigated within the framework of the Zakharov-type system of two coupled equations for the HF and low-frequency (LF) fields. In this system, the HF field is described by the linear Schrödinger equation with the potential generated by the LF component varying in time and space. The LF component in this system is described by the Korteweg-de Vries equation with a term of quadratic influence of the HF field on the LF field. The frequency of the DS soliton`s component oscillation was found analytically using the balance equation. The perturbed DS soliton was shown to be stable. The analytical results were confirmed by numerical simulations.

By using superconducting quantum interference device (SQUID) magnetometry, we investigated anisotropic high-field (H less than or similar to 7T) low-temperature (10 K) magnetization response of inhomogeneous nanoisland FeNi films grown by rf sputtering deposition on Sitall (TiO2) glass substrates. In the grown FeNi films, the FeNi layer nominal thickness varied from 0.6 to 2.5 nm, across the percolation transition at the d(c) similar or equal to 1.8 nm. We discovered that, beyond conventional spin-magnetism of Fe21Ni79 permalloy, the extracted out-of-plane magnetization response of the nanoisland FeNi films is not saturated in the range of investigated magnetic fields and exhibits paramagnetic-like behavior. We found that the anomalous out-of-plane magnetization response exhibits an escalating slope with increase in the nominal film thickness from 0.6 to 1.1 nm, however, it decreases with further increase in the film thickness, and then practically vanishes on approaching the FeNi film percolation threshold. At the same time, the in-plane response demonstrates saturation behavior above 1.5-2T, competing with anomalously large diamagnetic-like response, which becomes pronounced at high magnetic fields. It is possible that the supported-metal interaction leads to the creation of a thin charge-transfer (CT) layer and a Schottky barrier at the FeNi film/Sitall (TiO2) interface. Then, in the system with nanoscale circular domains, the observed anomalous paramagnetic-like magnetization response can be associated with a large orbital moment of the localized electrons. In addition, the inhomogeneous nanoisland FeNi films can possess spontaneous ordering of toroidal moments, which can be either of orbital or spin origin. The system with toroidal inhomogeneity can lead to anomalously strong diamagnetic-like response. The observed magnetization response is determined by the interplay between the paramagnetic-and diamagnetic-like contributions.

Radiation conditions are described for various space regions, radiation-induced effects in spacecraft materials and equipment components are considered and information on theoretical, computational, and experimental methods for studying radiation effects are presented. The peculiarities of radiation effects on nanostructures and some problems related to modeling and radiation testing of such structures are considered.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.