• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Article

О топологии многообразий, допускающих градиентно-подобные потоки с заданным неблуждающим множеством

Математические труды. 2018. Т. 21. № 2. С. 163-180.

In this paper, we study the relationship between the structure of the set of equilibrium states of a gradient-like flow and the topology of a carrier manifold of dimension 4 and higher. We introduce a class of manifolds admitting a generalized Heegaard decomposition. It is established that if a non-wandering set of a gradient-like flow consists of exactly $ \ mu $ nodal and $ \ nu $ saddle equilibrium states of the Morse indices $ 1 $ and $ (n-1) $, then its carrying manifold admits a generalized Heegaard decomposition of genus $ g = \ frac {\ nu- \ mu 2} {2} $. An algorithm is given for constructing gradient-like flows on closed manifolds of dimension $ n \ geq 3 $ with respect to a given number of nodal equilibrium states and given numbers of saddle equilibrium states for various Morse indices.